Watfore Limited Creamfields Residential Development

Site Infrastructure Report

252666-ARUP-XX-XX-RP-C-0001

Issue P03 | 16 February 2022

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 252666-00

Ove Arup & Partners International Ltd One Albert Quay Cork T12 X8N6 Ireland www.arup.com

CREAMRELDS ARUP

Document verification

ARUP

Job title		Creamfield	s Residential Develop	Job number					
				252666-00					
Document	title	Site Infrast	ructure Report	File reference					
				4-04-01					
Document ref		252666-AF	252666-ARUP-XX-XX-RP-C-0001						
Revision	Date	Filename							
Issue 1	12 Feb 2021	Description	Issued for S247 Meeting						
			Prepared by	Checked by	Approved by				
		Name	Richard Murphy	Stephen Ginn	Stephen Ginn				
		Signature							
P01	06 Aug	Filename	252666-ARUP-XX	-X-XX-RP-C-0001.do	DCX				
2021		Description	Issued for Pre-Planning						
			Prepared by	Checked by	Approved by				
		Name	Richard Murphy	Stephen Ginn	Stephen Ginn				
		Signature							
P02	17 Dec	Filename	252666-ARUP-XX-XX-RP-C-0001.docx						
	2021	Description	Draft Issue for Review						
			Prepared by	Checked by	Approved by				
		Name	Richard Murphy	Stephen Ginn	Stephen Ginn				
		Signature							
P03 16 Feb		Filename	252666-ARUP-XX-XX-RP-C-0001.docx						
	2022	Description	Issued for Planning	5					
			Prepared by	Checked by	Approved by				
		Name	Richard Murphy	Stephen Ginn	Stephen Ginn				
		Signature	Juhal Mirag	Stephen fi	Stephen fri				
		Issue Document verification with document							

Contents

			Page
1	Intro	duction	1
2	Existi	ing Site	1
	2.1	Existing site description	1
	2.2	Existing Services	1
3	Propo	osed Development	2
4	Propo	osed Wet Services	2
	4.1	Surface Water Drainage	2
	4.2	Foul Water Drainage	5
	4.3	Potable Water Supply	8

Appendices

Appendix A

Surface Water Drainage Calculations

Appendix B

SuDS features

Appendix C

Irish Water Pre-Connection Enquiry, Confirmation of Feasibility and Statement of Design Acceptance Correspondence

Appendix D

Combined Sewer Diversion File Note

Appendix E

Irish Water Foul Water Diversion Confirmation of Feasibility

Appendix F

CCTV Drainage Survey Results

Appendix G

Foul Water Pumping Station Information

1 Introduction

Arup have been commissioned by Watfore Limited to undertake the design of site infrastructure to support the planning application for the redevelopment of the former CMP Dairies site at Kinsale Road/Tramore Road, Cork.

This report outlines the proposed site infrastructure works associated with the development including:

- Surface Water Drainage
- Foul Water Drainage
- Potable Water Supply

2 Existing Site

2.1 Existing site description

The site is a brownfield site located adjacent to the junction of Kinsale Road and Tramore Road. The site generally falls in a north to south direction from a high point of circa 12.5m at the Tramore Road entrance to 6.0m at the southern end of the site. The existing site is predominantly hardstanding.

The site was previously a Milk Distribution Centre.

2.2 Existing Services

There is an existing Irish Water 600mm diameter combined sewer which enters the site from the west and exits to the east before ultimately draining away from the site in a north-easterly direction. There are existing utilities on site that previously served the Dairygold Milk Distribution Centre (e.g. water, power, telecoms). These are assumed to be redundant.

There is existing potable watermain infrastructure located adjacent to the site within Kinsale Road (150mm dia) and Tramore Road (200mm dia).

It is understood there are 2 No. surface water outfalls into the Tramore River to the south of the site. These are understood to take surface water runoff from the roads and buildings located immediately north of the outfalls.

3 Proposed Development

The proposed development will consist of a Strategic Housing Development of 609no. dwellings (561no. apartments (of which 257no. are Build To Rent) and 48no. townhouses) in 12no. buildings of between 1-15 storeys in height over ground, to include a coffee kiosk; gym; café; retail use; creche and community hub; public square; car parking; cycle parking; and all associated site development, infrastructural, and landscaping works on the site of the former CMP Dairies site, Kinsale Road and Tramore Road, Cork.

4 **Proposed Wet Services**

4.1 Surface Water Drainage

4.1.1 Surface Water Drainage Design Criteria

The following design standards and guidelines have been followed in the design of the surface water drainage for the site:

- BS EN 752 Drains and sewer system outside buildings.
- Greater Dublin Strategic Drainage Study (GDSDS) Volume 2 New Developments.
- The network has been designed to the following criteria:
 - No surcharging of pipes for up to and including the 1 in 5-year return period rainfall event
 - No above ground flooding for up to and including the 1 in 30-year return period rainfall event
 - Managed above ground flooding for up to and including the 1 in 100year return period rainfall event plus a 10% allowance for climate change. This means no flooding of vulnerable developments (e.g. residential units), significant infrastructure (e.g. substations) and no increase of flood risk to neighbouring sites.
- Proposed minimum and maximum velocities shall be as follows:
 - \circ Carrier pipe network 1.0m/s to 3.0m/s
- Colebrook White roughness value of 0.6mm for all pipework

4.1.2 Proposed Surface Water Drainage Strategy

It is proposed to construct a new dedicated surface water system to serve the proposed development as described by drawing 252666-ARUP-ZZ-XX-DR-C-1000.

The intention is to discharge surface water off site to an existing surface water pipework located within Kinsale Road to the south of the site. This surface water pipe ultimately outfalls to the Tramore River nearby. A CCTV survey of this pipe was carried out (see Appendix F) which indicates a blockage along the existing pipework upstream of the outfall. From discussions with CCC we understand the existing gullies in the vicinity of the pipework may not be adequately connected to the existing pipework. As part of the proposed works the pipe blockage will be remedied and the existing gullies will be connected to the pipework.

The existing site is predominantly impermeable, and it is expected any existing positive drainage system on site is in a poor state of repair. The site falls from north to south and the section of site immediately inside the southern boundary appears to have ponding water. The proposed surface water strategy aims to greatly reduce the discharge rates by restricting run-off from site to a QBAR Greenfield Runoff rate of 3.17 l/s/ha, see Appendix A. Attenuation will be provided to cater for those instances where the runoff generated on site exceeds the restricted run-off rate. It will be sized to cater for storms up to and including the 1 in 100-year event + 10% allowance for climate change. Attenuation measures will be provided in the form of below ground geocellular storage which will be located beneath public realm areas/the under-croft car park. In addition to this, SuDS features will be key to the proposed surface water strategy for the site. This is described in further detail in section 4.1.3 below.

The surface water network has been modelled to assess indicative attenuation volume requirements. Results of this model are presented in Appendix A.

4.1.3 Sustainable Drainage Systems (SuDS)

SuDs measures will be incorporated into the development to minimise surface water runoff and mimic natural drainage. SuDS measured considered for the site are outlined in Table 1 below. Typical images/details of the SuDS measures proposed are included in Appendix B.

SuDS Measure	Appropriate for the development? (Y/N)					
Attenuation ponds	N	Constrained urban site. Limited space available for attenuation ponds.				
Green roofs	Y	Included where deemed feasible by architect & landscape architect (Building E & F).				
Blue Roofs	N	There is a reluctance to put blue roofs above residential development.				
Infiltration Planters/ Bioretention systems/Rain Gardens	Y	Runoff from adjacent sealed hardstanding areas will be directed to drain towards planters and roof runoff will discharge to rain gardens where possible. The runoff to the buried network will be				

252666-ARUP-XX-XX-RP-C-0001 | Issue P03 | 16 February 2022 | Arup

\\GLOBAL\EUROPE\CORK\JOBS\252000\252666-00\4. INTERNAL\4-04 REPORTS\4-04-01 BUILDINGS\CIVIL\SHD\252666-ARUP-XX-XX-RP-C-0001.DOCX

		greatly reduced during low intensity rainfall events while overflow points will be provided to direct more intense rainfall to the buried drainage network to mitigate against flood risk to buildings/streets.
Permeable paving	Y	Adjacent sealed hardstanding (e.g. footpaths/roads) will be graded towards permeable paving to maximise the runoff draining via permeable paving.
Soakaway systems	Ν	There is uncertainty surrounding permeability of ground and extent of contamination. All SuDS features are conservatively assumed to be lined and hence no infiltration is allowed for.
Swales	N	There is limited space within the street corridors to accommodate swales.
Wetlands and detention basins	N	Constrained urban site. Limited space in the public realm available for wetlands/basins. Due to the likely presence of relatively shallow contaminated ground and poor infiltration rates within the upper strata on site, deep excavations for wetlands and detention basins are not advised.

The above SuDS measures will contribute towards providing the attenuation volumes required as described in section 4.1.2 above but will also provide a water quality benefit. A treatment train approach will be taken in line with Ciria C753 – The SuDS Manual. Table 2 below outlines the suitability of the various SuDS components for use within the management train.

Table 2 Suitability of SuDS components within treatment train (Source CIRIA C753 2015, Table 26.7)

SuDS measure	Interception	Close to source / primary treatment	Secondary treatment	Tertiary treatment
Green roofs	Y	Y		
Infiltration Planters/ Bioretention systems/Rain Gardens	Y	Y	Y	
Permeable pavement	Y	Y		

252666-ARUP-XX-XX-RP-C-0001 | Issue P03 | 16 February 2022 | Arup

Proprietary Treatment Systems	Y	Y	Y
----------------------------------	---	---	---

The pollution hazard and SuDS hazard mitigation associated with the proposed SuDS measures will be assessed in defining the proposed treatment train in line with the Simple Index Approach as described in The SuDS Manual. Treatment will be achieved through soil or gravel infiltration or via planted conveyance where possible but due to the constrained nature of the site it is anticipated proprietary treatment systems will be required in some instances, e.g. hydrocarbon interceptors and/or downstream defenders.

In addition to the above all gullies/drainage channels on site will have sumps to allow for capture and removal of silt/sediment.

Runoff from the large under croft car parking area will be passed through a class 1 hydrocarbon interceptor prior to being discharged to the foul water network, i.e. it won't discharge to the surface water network.

4.1.4 Maintenance

The developer will employ a management company to operate and maintain the surface water infrastructure on site. Regular maintenance of the features described above will be employed, e.g., cleaning of gully/channel sumps and emptying of hydrocarbon interceptors. The attenuation tanks on site will require periodic maintenance and cleaning. To enable this the detail design will include access points at upstream and downstream ends. The attenuation tank located beneath the under-croft car park will be maintained as follows:

- Tanker reverses to the bottom of the ramp and runs long hoses in to access points at each end of the tank for the purpose of sucking out debris, silt etc. This activity will be carried out during off peak times.
- Access points will be located in car parking spaces which will be put out of commission for the duration of maintenance activities.
- A power washer can be parked locally in the space adjacent to the access point.

4.2 Foul Water Drainage

4.2.1 Foul Water Drainage Design Criteria

The design criteria used to develop the foul network includes the following:

- BS EN 752 Drain and sewer systems outside buildings
- Part H Building Regulations
- Irish Water Code of Practice for Wastewater Infrastructure
- Minimum self-cleansing velocity 0.75m/s
- Colebrook-White roughness value of 1.5mm for all pipework

252666-ARUP-XX-XX-RP-C-0001 | Issue P03 | 16 February 2022 | Arup

- Sanitary DWF loadings are outlined below:
 - Residential -165 l/person/day as per Irish Water Code of Practice
 - o Retail/Commercial 300 l/100m2/day
- Residential unit density taken as 2.7 persons per property.
- EPA Wastewater Treatment Manuals

4.2.2 Foul Water Drainage Strategy

It is proposed to construct a dedicated below ground foul network to collect and convey all foul water generated by the development as described by drawing 252666-ARUP-ZZ-XX-DR-C-2000.

As described in section 2.2 there is an existing 600mm diameter combined sewer crossing the site from west to east. It is proposed to divert this sewer in order to accommodate the proposed building/site layout.

It is proposed to discharge all foul water from Block E in the northern section of the site via gravity to the diverted combined sewer. The remaining buildings to the south cannot discharge to the combined sewer via gravity due to the topography of the site. As a result, it is proposed to discharge foul runoff from the majority of the site to a centrally located Pumping Station (PS). A rising main from the PS will discharge to the combined sewer. Estimated foul water generated on site is described by tables 3 and 4 below. "Non-residential" refers to the proposed café/retail/crèche/gym/ coffee kiosk uses on site. For the purposes of the below estimates DWF is calculated assuming residential units have an operational duration of 16 hours and non-residential 10 hours.

Unit	Population	Area	DWF Loading		DWF	6DWF
		(m ²)	(l/h/d)	$(1/100m^2/d)$	(l/s)	(l/s)
Residential	311 (115 units x 2.7 persons per unit)	-	165	-	0.89	5.34
Non-residential	-	1040	-	300	0.09	0.54
Total	-	-	-	-	0.98	5.88

Table 3 Estimated Foul Water discharge rates – To Combined Sewer

Unit	Population	Area	DWF Loading		DWF	6DWF
		(m ²)	(l/h/d)	(l/100m ² /d)	(l/s)	(l/s)
Residential	1,334 (494 units x 2.7 persons per unit)	-	165	-	3.82	22.92
Non-residential	-	937	-	300	0.08	0.48
Total	-	-	-	-	3.90	23.4

Table 4 Estimated Foul Water discharge rates - To Pumping Station

In addition to the above any rainwater runoff from the under-croft car park will be discharged to the foul water network via a class 1 hydrocarbon interceptor. This flow is anticipated to be very small as the car park is covered.

4.2.3 Foul Water Pumping Station

A pumping station (PS) will be located within the public realm area between blocks B, I and J. 182m³ hours' worth of emergency storage will be provided within the pumping station design in line with Irish Water Code of Practice Section 5.11. It is intended this pumping station will be taken in charge by Irish Water. Due to the PS's proximity to both residential units and public realm areas the design has incorporated the following features:

- The pumping station will be carefully located/ configured to ensure the distance between access covers linked to the wet well and nearby dwellings is at least 15m. Covers will be double sealed to prevent odour escape.
- The landscaping design will take into account the requirement for the pumping station to ensure the above ground features (e.g. control kiosk) are screened appropriately while still maintaining adequate access for operations/ maintenance. Surfacing will be rated for vehicle loading where required to enable access for maintenance activities.
- The wet well will be circular and will incorporate steep benching to promote self-cleansing of the flow into the wet well and reduce the risk of solids settling out on the benching itself.
- The vent stack from the wet well will be taken to roof level of the nearest building and will be fitted with an activated carbon filter. Furthermore, an additional vent stack will be provided at the highest point on the gravity network which will similarly be vented to building roof level and fitted with an activated carbon filter. It is anticipated that specialist design input will be sought to design the venting system during detail design.
- The pumps themselves will be 2 No. Flygt Concertor XPC intelligent pumps in a duty/standby configuration. This specific pump type is proposed due its following features:

252666-ARUP-XX-XX-RP-C-0001 | Issue P03 | 16 February 2022 | Arup

- Self-monitoring functionality
- Built in/automatic sump and pipe cleaning to reduce odour and maintenance
- Automatic clog detection and integrated pump cleaning functions to ensure clog-free operation.
- It can come with a smaller/simplified control kiosk design to reduce visual intrusion on surrounding landscaping.

Further information on the proposed pump is provided in Appendix G.

4.2.4 Irish Water consultation

Irish Water have been consulted regarding the proposed combined sewer diversion and have confirmed acceptance of the design. See Appendix D where diversion documentation in addition to the engineering drawings is presented and Appendix E containing the Irish Water confirmation of feasibility for the proposed diversion.

A pre-connection enquiry has been submitted to Irish Water and they have issued a Confirmation of Feasibility Letter confirming they have capacity within their network to serve the development without upgrade. Subsequent to this, the planning design drawings were shared with Irish Water, and they have issued a Statement of Design Acceptance. See Appendix C.

4.3 **Potable Water Supply**

4.3.1 Potable Water Design Criteria

The watermain has been designed in accordance with the following guidelines and standards:

- Irish Water Code of Practice for Water Supply
- Civil Engineering Specification for the Water Industry (CESWI)
- BS EN 805:2000 Water Supply Requirements for systems and components outside buildings
- Part B of the Building Regulations
- Potable Water Demand loadings are outlined below:
 - Residential -150 l/person/day as per Irish Water Code of Practice
 - o Retail/Commercial 300 l/100m2/day

4.3.2 **Proposed Potable Water Supply Strategy**

It is proposed to construct a dedicated below ground potable water network serve the site as described by drawing 252666-ARUP-ZZ-XX-DR-C-3000.

It is proposed to provide a new connection from the existing watermain located in Kinsale Road. A bulk water meter will be provided immediately downstream of the 2 No. connections to the existing Irish Water watermain. Downstream of the bulk water meter a series of ring mains will be provided on site off which each development block will be fed. The metering strategy for the development will be as follows:

- For supply to high rise blocks with multiple apartments a below ground meter will be provided outside the building to allow for metering of the entire block and a water meter room is allowed for within the block to allow for metering of individual units.
- For supply to individual units (e.g. apartments with townhouse overhead as per Block L and retail/cafe units) a below ground meter will be provided outside the building.

External fire hydrants will be connected to the ring mains on site. The location/number of fire hydrants shall be confirmed during the fire certification stage.

Tables 5 below provides the breakdown of the water demand as part of the development and shows proposed average and peak demand rates. The peak demand is taken as five times the average daily demand in accordance with the Irish Water Code of Practice for Water Supply.

Unit	Population	Area (m2)	Water I	Demand Rate $(1/100 \text{ m}^2/\text{d})$	Average Demand	Peak Demand (5x) (1/s)
Residential	1,645 (609 units x 2.7 persons per unit)	-	165		4.71	23.55
Non-residential	-	1,977	-	300	0.17	0.85
Total	-	-	-	-	4.88	24.4

Table 5 Potable Water Demand Rates

A pre-connection enquiry has been submitted to Irish Water and they have issued a Confirmation of Feasibility Letter confirming they have capacity within their network to serve the development without upgrade. Subsequent to this, the planning design drawings were shared with Irish Water and they have issued a Statement of Design Acceptance, See Appendix C.

Appendix A

Surface Water Drainage Calculations

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Richard M	urphy			Site Details				
Site name:	Croamfield				Latitude:	51.87880° N			
One Halle.		5			Longitude:	8.46999° W			
Site location:	Kinsale Ro	ad, Cork							
This is an estimation in line with Environme SC030219 (2013), ti (Defra, 2015). This in the drainage of surfa	of the greenfield ent Agency guid he SuDS Manua formation on gre ce water runoff f	d runoff rate lance "Rain al C753 (Cir eenfield run from sites.	es that are u fall runoff m ia, 2015) ar off rates ma	used to meet norm nanagement for de nd the non-statutor ay be the basis for	al best practice criteria velopments", Reference: y standards for SuDS setting consents for Date:	2074079383 Feb 12 2022 07:38			
Runoff estimat	ion approad	h IH12	4						
Site characteri	stics				Notes				
Total site area (ha): 3.39				(1) Is $\Omega_{\text{DAD}} < 2.0 \text{ I/s/ha?}$				
Methodology									
Q _{BAR} estimation r	method: C	alculate fi	rom SPR	and SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are s				
SPR estimation n	nethod: C	alculate fi	rom SOIL	. type	at 2.0 l/s/ha.				
Soil characteris	stics De	efault	Edit	ed					
SOIL type:	2		2		(2) Are flow rates < 5.0 l/s?				
HOST class:	N/A		N/A						
SPR/SPRHOST:	0.3		0.3		usually set at 5.0 l/s if blockage from vegetation and other				
Hydrological cl	naracteristic	cs C	Default	Edited	materials is possible. Lower con-	sent flow rates may be set			
SAAR (mm):		112	23	1123	drainage elements.				
Hydrological regio	on:	13		13					
Growth curve factor 1 year:		0.8	5	0.85					
Growth curve factor 30 years:		1.6	5	1.65	Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.				
Growth curve factor 100 years:		: 1.9	5	1.95					
Growth curve fac	: 2.1	2.15 2.15							

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	10.74	10.74
1 in 1 year (l/s):	9.13	9.13
1 in 30 years (l/s):	17.72	17.72
1 in 100 year (l/s):	20.94	20.94
1 in 200 years (l/s):	23.09	23.09

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Ove Arup & Partners International Ltd		Page 1
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micco
Date 08/12/2021	Designed by ROD	Desinado
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye
XP Solutions	Network 2020.1.3	
<u>storm sewer de</u> <u>D</u> e	SIGN by the Modified Rational Method	
Pipe Siz FSR Rai: Beturn Period (years) 5	es STANDARD Manhole Sizes STANDARD nfall Model - Scotland and Ireland Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (m) 1.5	500
M5-60 (mm) 18.100 Ratio R 0.250 Maximum Rainfall (mm/hr) 50 Add 1 Maximum Time of Concentration (mins) 30 Min	Volumetric Runoff Coeff.0.750 Min Design Depth for Optimisation (m)1.2PIMP (%)100 Min Vel for Auto Design only (m/s)1.Flow / Climate Change (%)0 Min Slope for Optimisation (1:X)5nimum Backdrop Height (m)0.200	200 .00 500
	Designed with Level Soffits	
Netw	ork Design Table for Storm	
« -	Indicates pipe capacity < flow	
PN Length Fall Slope I.Are (m) (m) (1:X) (ha)	ea T.E. Base k HYD DIA Section Type Auto (mins) Flow (l/s) (mm) SECT (mm) Design	
1.000 14.889 0.880 16.9 0.03	30 5.00 0.0 0.600 o 225 Pipe/Conduit 🔒	
1.001 18.049 0.106 169.8 0.01 1.002 9.368 0.294 31.9 0.00	11 0.00 0.0 0.600 o 225 Pipe/Conduit	
1.003 56.473 2.620 21.6 0.08	36 0.00 0.0 0.600 6 225 Pipe/Conduit	
	<u>Network Results Table</u>	
PN Bain T.C. US/TL	E TArea E Base Foul Add Flow Vel Can Flow	
(mm/hr) (mins) (m)	(ha) Flow $(1/s)$ $(1/s)$ $(1/s)$ (m/s) $(1/s)$ $(1/s)$	
L.UUU 50.00 5.08 10.855 1 001 50 00 5 38 9 975		
1.002 50.00 5.45 9.869	0.049 0.0 0.0 0.0 2.32 92.4 6.6	
1.003 50.00 5.78 9.575	0.135 0.0 0.0 0.0 2.83 112.6 18.2	
	©1982-2020 Innovyze	

Ove Arup & Partners International Ltd P						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Micro				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamage				
XP Solutions	Network 2020.1.3					

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
2.000	53.498	0.320	167.2	0.178	5.00	0.0	0.600	0	300	Pipe/Conduit	•
1.004	25.356	0.280	90.6	0.042	0.00	0.0	0.600	0	300	Pipe/Conduit	A
1.005	6.444	0.100	64.4	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	Ā
1.006	8.561	0.037	231.7	0.181	0.00	0.0	0.600	0	300	Pipe/Conduit	Ă
1.007	57.564	0.248	231.7	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	Ă
1.008	10.852	0.040	272.7	0.351	0.00	0.0	0.600	0	375	Pipe/Conduit	Ă
											-
3.000	52.671	0.600	87.8	0.036	5.00	0.0	0.600	0	225	Pipe/Conduit	<u> </u>
3.001	54.633	0.324	168.9	0.052	0.00	0.0	0.600	0	225	Pipe/Conduit	Ă
3.002	11.950	3.402	3.5	0.016	0.00	0.0	0.600	0	225	Pipe/Conduit	Ă
											-
1.009	13.904	0.035	397.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
2.000	50.00	5.73	7.275	0.178	0.0	0.0	0.0	1.21	85.8	24.2
1.004	50.00	6.03	6.955	0.355	0.0	0.0	0.0	1.65	116.8	48.0
1.005	50.00	6.09	6.675	0.355	0.0	0.0	0.0	1.96	138.7	48.0
1.006	50.00	6.23	6.500	0.536	0.0	0.0	0.0	1.03	72.7	72.5
1.007	50.00	7.16	6.463	0.536	0.0	0.0	0.0	1.03	72.7	72.5
1.008	50.00	7.33	6.140	0.887	0.0	0.0	0.0	1.09	120.6	120.1
3.000	50.00	5.63	10.575	0.036	0.0	0.0	0.0	1.40	55.5	4.9
3.001	50.00	6.54	9.975	0.088	0.0	0.0	0.0	1.00	39.9	12.0
3.002	50.00	6.56	9.651	0.105	0.0	0.0	0.0	7.03	279.6	14.2
1.009	50.00	7.68	6.100	0.992	0.0	0.0	0.0	0.65	25.8«	134.3

Ove Arup & Partners International Ltd P						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Micco				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye				
XP Solutions	Network 2020.1.3					

Auto Design	Section Type	DIA (mm)	HYD SECT	k (mm)	Base ow (l/s)	F	T.E. (mins)	I.Area (ha)	Slope (1:X)	Fall (m)	Length (m)	PN
•	Pipe/Conduit	225	0	0.600	0.0)	0.00	0.000	279.6	0.265	74.086	1.010
•	Pipe/Conduit	225	0	0.600	0.0)	5.00	0.159	167.2	0.194	32.463	4.000
•	Pipe/Conduit	225	0	0.600	0.0)	5.00	0.048	109.3	0.194	21.228	5.000
•	Pipe/Conduit	225	0	0.600	0.0)	0.00	0.020	167.2	0.235	39.277	4.001
•	Pipe/Conduit Pipe/Conduit	225 225	0	0.600 0.600	0.0)	5.00 0.00	0.099 0.000	167.2 85.0	0.177 0.252	29.550 21.439	6.000 6.001
•	Pipe/Conduit	300	0	0.600	0.0)	0.00	0.086	241.9	0.134	32.371	4.002
8	Pipe/Conduit	225	0	0.600	0.0)	5.00	0.000	122.1	0.563	68.736	7.000

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL X (m)	E I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.010	50.00	9.27	6.065	0.992	0.0	0.0	0.0	0.78	30.9«	134.3
4.000	50.00	5.54	7.075	0.159	0.0	0.0	0.0	1.01	40.1	21.6
5.000	50.00	5.28	7.075	0.048	0.0	0.0	0.0	1.25	49.7	6.6
4.001	50.00	6.19	6.881	0.228	0.0	0.0	0.0	1.01	40.1	30.9
6.000 6.001	50.00 50.00	5.49 5.74	7.075 6.898	0.099 0.099	0.0	0.0	0.0	1.01 1.42	40.1 56.4	13.4 13.4
4.002	50.00	6.72	6.571	0.413	0.0	0.0	0.0	1.01	71.1	55.9
7.000	50.00	5.97	7.075	0.000	0.0	0.0	0.0	1.18	47.0	0.0

Ove Arup & Partners International Ltd						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Micro				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diginada				
XP Solutions	Network 2020.1.3					

PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
4.003	26.198	0.108	241.9	0.046	0.00		0.0	0.600	0	300	Pipe/Conduit	•
8.000	53.503	2.500	21.4	0.132	5.00		0.0	0.600	0	225	Pipe/Conduit	A
8.001	15.658	0.746	21.0	0.047	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
4.004	3.793	0.529	7.2	0.030	0.00		0.0	0.600	0	225	Pipe/Conduit	
1.011	80.773	0.320	252.4	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	0
9.000	22.963	0.137	167.6	0.037	5.00		0.0	0.600	0	225	Pipe/Conduit	A
9.001	5.347	0.032	167.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
10.000	19.954	0.140	142.6	0.116	5.00		0.0	0.600	0	225	Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
4.003	50.00	7.16	6.437	0.459	0.0	0.0	0.0	1.01	71.1	62.1
8.000 8.001	50.00 50.00	5.31 5.40	9.575 7.075	0.132 0.178	0.0	0.0	0.0	2.84 2.87	113.0 114.1	17.9 24.2
4.004	50.00	7.17	6.329	0.667	0.0	0.0	0.0	4.92	195.5	90.4
1.011	46.87	10.92	5.800	1.659	0.0	0.0	0.0	0.82	32.5«	210.6
9.000 9.001	50.00 50.00	5.38 5.47	6.304 6.167	0.037 0.037	0.0	0.0	0.0	1.01 1.01	40.0 40.1	5.0 5.0
10.000	50.00	5.30	6.275	0.116	0.0	0.0	0.0	1.09	43.4	15.7

Ove Arup & Partners International Ltd		Page 5
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micro
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diginada
XP Solutions	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
9.002	34.702	0.208	167.2	0.065	0.00		0.0	0.600	0	225	Pipe/Conduit	0
11.000	21.835	0.647	33.7	0.052	5.00		0.0	0.600	0	225	Pipe/Conduit	•
9 003	34 992	0 145	241 9	0 088	0 00		0 0	0 600	0	300	Pipe/Conduit	•
9 004	12 473	0 052	241 9	0 000	0 00		0.0	0 600	0	300	Pipe/Conduit	_
9.005	27.260	0.113	241.2	0.058	0.00		0.0	0.600	0	300	Pipe/Conduit	4
											-	
12.000	46.789	0.500	93.6	0.078	5.00		0.0	0.600	0	225	Pipe/Conduit	<u>A</u>
12.001	16.525	0.532	31.1	0.035	0.00		0.0	0.600	0	225	Pipe/Conduit	ă
												-
9.006	4.848	0.063	77.0	0.013	0.00		0.0	0.600	0	225	Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
9.002	50.00	6.04	6.135	0.218	0.0	0.0	0.0	1.01	40.1	29.6
11.000	50.00	5.16	6.575	0.052	0.0	0.0	0.0	2.26	89.8	7.1
9.003	50.00	6.62	5.853	0.359	0.0	0.0	0.0	1.01	71.1	48.6
9.004 9.005	50.00	7.28	5.656	0.359	0.0	0.0	0.0	1.01	71.2	48.8 56.4
12.000 12.001	50.00 50.00	5.58 5.69	6.575 6.075	0.078 0.113	0.0	0.0	0.0	1.35 2.36	53.8 93.7	10.6 15.3
9.006	50.00	7.33	5.543	0.543	0.0	0.0	0.0	1.49	59.3«	73.5

Ove Arup & Partners International Ltd	Page 6	
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micco
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamage
XP Solutions	Network 2020.1.3	

Auto	Section Type	DIA	HYD	k	ase	Ba	T.E.	I.Area	Slope	Fall	Length	PN
Design		(mm)	SECT	(mm)	(1/s)	Flow	(mins)	(ha)	(1:X)	(m)	(m)	
•	Pipe/Conduit	225	0	0.600	0.0		0.00	0.000	154.9	0.395	61.180	1.012
	Pipe/Conduit	225	0	0.600	0.0		5.00	0.082	200.0	0.298	59.568	13.000
ē	Pipe/Conduit	225	0	0.600	0.0		0.00	0.033	200.0	0.016	3.199	13.001
۵	Pipe/Conduit	225	0	0.600	0.0		5.00	0.151	204.3	0.304	62.122	14.000
_	Pipe/Conduit	225	0	0.600	0.0		0.00	0.000	200.0	0.105	21.008	13.002
ě	Pipe/Conduit	300	0	0.600	0.0		0.00	0.132	200.0	0.253	50.623	13.003
•	Pipe/Conduit	225	0	0.600	0.0		5.00	0.032	196.9	0.102	20.085	15.000
0	Pipe/Conduit	300	0	0.600	0.0		0.00	0.000	200.0	0.034	6.812	13.004

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.012	45.02	11.89	5.480	2.202	0.0	0.0	0.0	1.05	41.7«	268.5
13.000	50.00	6.08	6.250	0.082	0.0	0.0	0.0	0.92	36.6	11.1
13.001	50.00	6.14	5.952	0.115	0.0	0.0	0.0	0.92	36.6	15.5
14.000	50.00	6.14	6.240	0.151	0.0	0.0	0.0	0.91	36.2	20.5
13.002	50.00	6.52	5.936	0.266	0.0	0.0	0.0	0.92	36.6	36.0
13.003	50.00	7.28	5.831	0.398	0.0	0.0	0.0	1.11	78.3	53.9
15.000	50.00	5.36	5.680	0.032	0.0	0.0	0.0	0.93	36.9	4.3
13.004	50.00	7.38	5.578	0.430	0.0	0.0	0.0	1.11	78.3	58.2

Ove Arup & Partners International Ltd	Page 7	
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micco
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamage
XP Solutions	Network 2020.1.3	

Auto Design	Section Type	DIA (mm)	HYD SECT	k (mm)	Base Flow (l/s)	T.E. (mins)	I.Area (ha)	Slope (1:X)	Fall (m)	Length (m)	PN
0	Pipe/Conduit	225	0	0.600	0.0	5.00	0.035	192.0	0.126	24.189	16.000
0	Pipe/Conduit	300	0	0.600	0.0	0.00	0.064	118.8	0.178	21.151	13.005
0	Pipe/Conduit	225	0	0.600	0.0	5.00	0.091	148.7	0.274	40.755	17.000
•	Pipe/Conduit Pipe/Conduit	300 300	0	0.600 0.600	0.0	0.00	0.060 0.000	300.0 306.6	0.074 0.067	22.073 20.545	13.006 13.007
⊕ ⊕	Pipe/Conduit Pipe/Conduit	225 225	0	0.600 0.600	0.0	5.00 0.00	0.021 0.017	200.0 194.2	0.149 0.159	29.796 30.885	18.000 18.001
0	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	200.9	0.022	4.420	13.008

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
16.000	50.00	5.43	5.670	0.035	0.0	0.0	0.0	0.94	37.4	4.7
13.005	50.00	7.63	5.544	0.529	0.0	0.0	0.0	1.44	101.9	71.6
17.000	50.00	5.63	5.640	0.091	0.0	0.0	0.0	1.07	42.5	12.3
13.006 13.007	50.00 50.00	8.03 8.42	5.366 5.292	0.680 0.680	0.0	0.0	0.0	0.90 0.89	63.8« 63.1«	92.0 92.0
18.000 18.001	50.00 50.00	5.54 6.09	5.533 5.384	0.021 0.038	0.0	0.0	0.0	0.92 0.93	36.6 37.2	2.8 5.1
13.008	50.00	8.50	5.225	0.718	0.0	0.0	0.0	0.92	36.5«	97.2

Ove Arup & Partners International Ltd	Page 8	
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micro
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Dialitacje
XP Solutions	Network 2020.1.3	

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
												_
1.013	20.942	0.105	200.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	8
1.014	23.334	0.120	194.5	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	8
1.015	16.164	0.122	132.5	0.025	0.00		0.0	0.600	0	225	Pipe/Conduit	8
1.016	12.292	0.156	78.8	0.026	0.00		0.0	0.600	0	225	Pipe/Conduit	<u> </u>
1.017	6.270	0.104	60.3	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ő

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
1.013	44.36	12.27	5.203	2.920	0.0	0.0	0.0	0.92	36.6«	350.7
1.014	43.65	12.68	5.098	2.920	0.0	0.0	0.0	0.93	37.1«	350.7
1.015	43.26	12.92	4.978	2.945	0.0	0.0	0.0	1.13	45.1«	350.7
1.016	43.03	13.06	4.856	2.971	0.0	0.0	0.0	1.47	58.6«	350.7
1.017	42.94	13.12	4.700	2.971	0.0	0.0	0.0	1.69	67.1«	350.7

Surcharged Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.017 SWMH 5.850 4.596 4.596 225 0

Datum (m) 0.000 Offset (mins) 0

Time	Depth																						
(mins)	(m)																						
5	4.510	20	4.510	35	4.510	50	4.510	65	4.510	80	4.510	95	4.510	110	4.510	125	4.510	140	4.510	155	4.510	170	4.510
10	4.510	25	4.510	40	4.510	55	4.510	70	4.510	85	4.510	100	4.510	115	4.510	130	4.510	145	4.510	160	4.510	175	4.510
15	4.510	30	4.510	45	4.510	60	4.510	75	4.510	90	4.510	105	4.510	120	4.510	135	4.510	150	4.510	165	4.510	180	4.510

Ove Arup & Partners International Ltd						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Mirro				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye				
XP Solutions	Network 2020.1.3					

Surcharged Outfall Details for Storm

Time	Depth																						
(mins)	(m)																						
185	4.510	290	4.510	395	4.510	500	4.510	605	4.510	710	4.510	815	4.510	920	4.510	1025	4.510	1130	4.510	1235	4.510	1340	4.510
190	4.510	295	4.510	400	4.510	505	4.510	610	4.510	715	4.510	820	4.510	925	4.510	1030	4.510	1135	4.510	1240	4.510	1345	4.510
195	4.510	300	4.510	405	4.510	510	4.510	615	4.510	720	4.510	825	4.510	930	4.510	1035	4.510	1140	4.510	1245	4.510	1350	4.510
200	4.510	305	4.510	410	4.510	515	4.510	620	4.510	725	4.510	830	4.510	935	4.510	1040	4.510	1145	4.510	1250	4.510	1355	4.510
205	4.510	310	4.510	415	4.510	520	4.510	625	4.510	730	4.510	835	4.510	940	4.510	1045	4.510	1150	4.510	1255	4.510	1360	4.510
210	4.510	315	4.510	420	4.510	525	4.510	630	4.510	735	4.510	840	4.510	945	4.510	1050	4.510	1155	4.510	1260	4.510	1365	4.510
215	4.510	320	4.510	425	4.510	530	4.510	635	4.510	740	4.510	845	4.510	950	4.510	1055	4.510	1160	4.510	1265	4.510	1370	4.510
220	4.510	325	4.510	430	4.510	535	4.510	640	4.510	745	4.510	850	4.510	955	4.510	1060	4.510	1165	4.510	1270	4.510	1375	4.510
225	4.510	330	4.510	435	4.510	540	4.510	645	4.510	750	4.510	855	4.510	960	4.510	1065	4.510	1170	4.510	1275	4.510	1380	4.510
230	4.510	335	4.510	440	4.510	545	4.510	650	4.510	755	4.510	860	4.510	965	4.510	1070	4.510	1175	4.510	1280	4.510	1385	4.510
235	4.510	340	4.510	445	4.510	550	4.510	655	4.510	760	4.510	865	4.510	970	4.510	1075	4.510	1180	4.510	1285	4.510	1390	4.510
240	4.510	345	4.510	450	4.510	555	4.510	660	4.510	765	4.510	870	4.510	975	4.510	1080	4.510	1185	4.510	1290	4.510	1395	4.510
245	4.510	350	4.510	455	4.510	560	4.510	665	4.510	770	4.510	875	4.510	980	4.510	1085	4.510	1190	4.510	1295	4.510	1400	4.510
250	4.510	355	4.510	460	4.510	565	4.510	670	4.510	775	4.510	880	4.510	985	4.510	1090	4.510	1195	4.510	1300	4.510	1405	4.510
255	4.510	360	4.510	465	4.510	570	4.510	675	4.510	780	4.510	885	4.510	990	4.510	1095	4.510	1200	4.510	1305	4.510	1410	4.510
260	4.510	365	4.510	470	4.510	575	4.510	680	4.510	785	4.510	890	4.510	995	4.510	1100	4.510	1205	4.510	1310	4.510	1415	4.510
265	4.510	370	4.510	475	4.510	580	4.510	685	4.510	790	4.510	895	4.510	1000	4.510	1105	4.510	1210	4.510	1315	4.510	1420	4.510
270	4.510	375	4.510	480	4.510	585	4.510	690	4.510	795	4.510	900	4.510	1005	4.510	1110	4.510	1215	4.510	1320	4.510	1425	4.510
275	4.510	380	4.510	485	4.510	590	4.510	695	4.510	800	4.510	905	4.510	1010	4.510	1115	4.510	1220	4.510	1325	4.510	1430	4.510
280	4.510	385	4.510	490	4.510	595	4.510	700	4.510	805	4.510	910	4.510	1015	4.510	1120	4.510	1225	4.510	1330	4.510	1435	4.510
285	4.510	390	4.510	495	4.510	600	4.510	705	4.510	810	4.510	915	4.510	1020	4.510	1125	4.510	1230	4.510	1335	4.510	1440	4.510

Ove Arup & Partners Interna	tional L	td									Page 10	
The Arup Campus				Cr	eamfields	SHD						
Blyth Gate				Pl	anning							
Solihull B90 8AE											Mico	
Date 08/12/2021				De	signed by		U					
File SW Design Planning (2y	vr SC).MD	Х		Ch	ecked by 1	Uldi	nage					
XP Solutions				Ne	twork 202	0.1.3						
				<u>Onlin</u>	e Control	s for Sto	rm					
							4					
		<u>Hydro-Bra</u>	<u>ike® Opti</u>	<u>mum Manho</u>	le: SWMH1	4, DS/PN:	1.009, V	<u>olume (m³)</u>	<u>: 9.1</u>			
		Unit Pofo	ronco MD-1	945-0094-310	0-1000-3100	C	c	ump Ausilshi	o Voc			
		Design Hea	d (m)	SHE-0004-310	1.000)	6	Diameter (mm	n) 84			
	D	esign Flow	(l/s)		3.1	- L	Inv	ert Level (m	n) 6.100			
		Flush	-Flo™		Calculated	d Minimum Ou	utlet Pipe	Diameter (mm	n) 100			
		Obje	ctive Mi	nimise upstr	eam storage	e Suggeste	ed Manhole	Diameter (mm	n) 1200			
		Applic	ation		Surface	9						
		Control Poi	ints	Head (m) F	low (l/s)	Contro	l Points	Head (m)	Flow (1/	's)		
	Desig	n Point (Ca	lculated)	1.000	3.1	leen Dieu eu	Kick-F	Lo® 0.623	2	2.5		
		Ľ	1usn-F10	0.297	2.1	lean Flow ov	er head kar	ige –	2	. /		
The hydrological calculations	have been	based on th	ne Head/Di	scharge rela	ationship fo	or the Hydro	o-Brake® Op	timum as spe	cified.	Should anot	ther type of cont	crol device
other than a Hydro-Brake Optim	num® be uti	lised then	these sto	rage routing	g calculatio	ons will be	invalidate	d				
Depth (m) Flo	ow (1/s) D	epth (m) Fl	ow (1/s)	Depth (m) F	low (l/s) D	epth (m) Fl	.ow (1/s) D	epth (m) Flo	w (1/s)	Depth (m) F	low (l/s)	
		- <u>-</u>	(_, _,			- F (,						
0.100	2.5	0.600	2.6	1.600	3.8	2.600	4.8	5.000	6.6	7.500	7.9	
0.200	3.0	0.800	2.8	1.800	4.1	3.000	5.2	5.500	6.9	8.000	8.2	
0.300	3.1	1 200	3.1	2.000	4.3	3.500	5.5	6.000	7.1	8.500	8.4 8.7	
0.400	2.9	1.400	3.6	2.200	4.6	4.500	6.2	7.000	7.7	9.500	8.9	
	I		I		I		I		I			
		<u>Hydro-Bra</u>	<u>ke® Opti</u>	.mum Manho	le: SWMH2	6, DS/PN:	4.004, V	olume (m³)	: 4.8			
						_						
		Unit Refe	rence MD-:	SHE-0061-210	1 700-2100		S	ump Availabl	e Yes			
		Design Hea	(1) (1)		1.700	1	Tnu	ort Iovol (mm	1) 6320			
	D	ESIGN FIUW Fluch	(1/5) -Flom		Calculater	⊥ A Minimum Ou	itlet Pine	Diameter (mm	() 0.529			
		Obje	ctive Min	nimise unstr	Calculated		ad Manhole	Diameter (mm	1) 1200			
		Applic	ation	urmise upser	Surface	s buyyesta	eu Mannore	Diamecei (mi	1) 1200			
		Abbiic	ación		Surrace	-						

Ove Arup & Partners International Ltd						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Mirro				
Date 08/12/2021	Designed by ROD	Dcainago				
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye				
XP Solutions	Network 2020.1.3					

Hydro-Brake® Optimum Manhole: SWMH26, DS/PN: 4.004, Volume (m³): 4.8

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.700	2.1	Kick-Flo®	0.541	1.3
	Flush-Flo™	0.267	1.5	Mean Flow over Head Range	-	1.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)										
0.100	1.3	0.600	1.3	1.600	2.0	2.600	2.5	5.000	3.5	7.500	4.2
0.200	1.5	0.800	1.5	1.800	2.2	3.000	2.7	5.500	3.6	8.000	4.3
0.300	1.5	1.000	1.6	2.000	2.3	3.500	2.9	6.000	3.8	8.500	4.4
0.400	1.5	1.200	1.8	2.200	2.4	4.000	3.1	6.500	3.9	9.000	4.5
0.500	1.4	1.400	1.9	2.400	2.5	4.500	3.3	7.000	4.0	9.500	4.7

Hydro-Brake® Optimum Manhole: SWMH38, DS/PN: 9.006, Volume (m³): 4.7

Unit Reference	MD-SHE-0057-1700-1400-1700	Sump	Available Yes
Design Head (m)	1.400	Dia	meter (mm) 57
Design Flow (l/s)	1.7	Invert	Level (m) 5.543
Flush-Flo™	Calculated	Minimum Outlet Pipe Diam	meter (mm) 75
Objective	Minimise upstream storage	Suggested Manhole Dia	meter (mm) 1200
Application	Surface		
Control Points	Head (m) Flow (l/s)	Control Points	Head (m) Flow (l/s)
Design Point (Calcula	ted) 1.400 1.7	Kick-Flo®	0.508 1.1
Flush-	Flo™ 0.251 1.3 Me	an Flow over Head Range	- 1.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)										
0.100	1.2	0.300	1.3	0.500	1.1	0.800	1.3	1.200	1.6	1.600	1.8
0.200	1.3	0.400	1.3	0.600	1.2	1.000	1.5	1.400	1.7	1.800	1.9

Ove Arup & Partners International Ltd	age 12	
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micco
Date 08/12/2021	Designed by ROD	
File SW Design Planning (2yr SC).MDX	Checked by RM	Digiliada
XP Solutions	Network 2020.1.3	
Hydro-Brake® Optimum Mar	hole: SWMH38, DS/PN: 9.006, Volume (m³): 4.7	
		1 /_>
Depth (m) Flow (1/S) Depth (m) Flow (1/S) Depth (m)) FIOW (1/S) Depth (m) FIOW (1/S) Depth (m) FIOW (1/S) Depth (m) FIOW (.	1/5)
2.000 2.0 2.600 2.3 4.000	0 2.7 5.500 3.2 7.000 3.6 8.500	3.9
2.200 2.1 3.000 2.4 4.500	0 2.9 6.000 3.3 7.500 3.7 9.000	4.0
2.400 2.2 3.500 2.6 5.000	3.0 6.500 3.4 8.000 3.8 9.500	4.1
Undra Drata Ontinum Man	halo, $CWMUEA$ DC/DN, 12,000 Valuma (m3), 4,1	
nyuro-Brakew Optimum Man	note: Swmh34, DS/PN: 13.008, Volume (m/): 4.1	
Unit Reference MD-SHE-0071-	-2300-1100-2300 Sump Available Yes	
Design Head (m)	1.100 Diameter (mm) 71	
Design Flow (l/s)	2.3 Invert Level (m) 5.225	
Flush-Flo™	Calculated Minimum Outlet Pipe Diameter (mm) 100	
Objective Minimise up	ostream storage Suggested Manhole Diameter (mm) 1200	
Application	Surface	
Control Points Head (m)) Flow (l/s) Control Points Head (m) Flow (l/s)	
Design Point (Calculated) 1.10) 2.3 Kick-Flo® 0.630 1.8	
Flush-Flo™ 0.310	0 2.2 Mean Flow over Head Range - 2.0	
other than a Hydro-Brake Optimum® be utilised then these storage rout	crationship for the Hydro-Brakew optimum as specified. Should another t ting calculations will be invalidated	ype of control device

Depth (m)	Flow (1/	s)	Depth (m)	Flow (l/s)								
0.100	1	L.8	0.600	1.9	1.600	2.7	2.600	3.4	5.000	4.6	7.500	5.6
0.200	2	2.1	0.800	2.0	1.800	2.9	3.000	3.6	5.500	4.8	8.000	5.8
0.300	2	2.2	1.000	2.2	2.000	3.0	3.500	3.9	6.000	5.0	8.500	5.9
0.400	2	2.2	1.200	2.4	2.200	3.2	4.000	4.2	6.500	5.2	9.000	6.1
0.500	2	2.1	1.400	2.6	2.400	3.3	4.500	4.4	7.000	5.4	9.500	6.3

Ove Arup & Partners International Ltd		Page 13
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micro
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamage
XP Solutions	Network 2020.1.3	
<u>Sto:</u>	rage Structures for Storm	
Tank or Por	nd Manhole: SWMH10, DS/PN: 1.008	
	Invert Level (m) 6.140	
Depth (m) Area (m	²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 1000	.0 0.750 1000.0 0.751 0.0	
Tank or Por	nd Manhole: SWMH21, DS/PN: 4.002	
	Invert Level (m) 6.571	
Depth (m) Area (m	²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 300	.0 1.500 300.0 1.501 0.0	
Tank or Por	nd Manhole: SWMH34, DS/PN: 9.004	
	Invert Level (m) 5.708	
Depth (m) Area (m	²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 300	.0 1.200 300.0 1.201 0.0	
Tank or Pon	d Manhole: SWMH50, DS/PN: 13.006	
	Invert Level (m) 5.366	
Depth (m) Area (m	²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 570	.0 1.000 570.0 1.001 0.0	

Ove Ar	up & E	Partners In	ternat	ional I	utd										Pag	ge 14	
The Ar	up Cam	npus					Crea	mfields	SHD								
Blyth	Gate						Plan	ning									
Solihu	11 в9	0 8AE														Micco	
Date 0	8/12/2	2021					Desi	gned by	ROD								
File S	W Desi	.gn Plannin	q (2yr	SC).ME	X		Chec	ked by F	M							Ucilia	ige
XP Sol	utions	<u> </u>					Netw	ork 2020	.1.3								
			4	2 year	<u>Return Perio</u>	d Summary	y of Crit	ical Res	ults b	y Maximum	Level	(Rank	1) for	Storm			
			7	Deductio	n Fastan 1 000	Manhali	<u>Si</u>	<u>mulation (</u>	<u>Criteria</u>			+ 1()m ³ /ba Ct				
			Arear	Hot Star	rt (mins) 0	Foul	Sewage per	bectare	(1/s) 0	.000	MADD Faci	Tnlet	Coeffie	cient 0.800			
			Hot	Start Le	evel (mm) 0	Additiona	al Flow - %	of Total	Flow 0	.000 Flow pe	er Person	n per Da	ay (l/per	/day) 0.000			
				Numb	er of Input Hyd	drographs	0 Number	of Offlir	e Contr	ols 0 Numbe	r of Tim	le/Area	Diagrams	0			
				IN UL	mber of oniffie	CONCLOIS	4 NUNDEL O.	L SLOIAYE	SLIUCLU	res 4 humbe	I OI Rea	I IIMe	CONCLOIS	0			
							Synthe	tic Rainf	all Deta	ails							
					Rainfall	Model		FSR M5	5-60 (mm) 18.100 Cv	(Summer) 0.750					
	Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840																
	Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF																
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status OFF																	
						D	IS Status			(OFF						
						Pi	cofile(s)			Summe	er and Wi	Inter					
						Duration(s	s) (mins) 1	5, 30, 60	, 120, 2	240, 360, 48	30, 960,	1440					
					Return	Period(s)	(years)				2, 30,	100					
						Climate Cr	nange (%)				0,0), 10					
									Water	Surcharged	Flooded			Half Drain	Pipe		
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	SWMH1	15 Winter	2	+0%					10.883	-0.197	0.000	0.04			4.3	OK	
1.001	SWMH2	15 Winter	2	+0%					10.035	-0.165	0.000	0.16			5.6	OK	
1.002	SWMH3	15 Winter	2	+0%					9.913	-0.180	0.000	0.09			6.6	OK	
2.000	SWMH4 SWMH5	15 Winter	2	+U% +N%	100/15 Summer				9.635 7.392	-U.165 -0 183	0.000	U.16 0 31			1/.U 25 1	OK OK	
1.004	SWMH6	15 Winter	2	+0%	30/15 Summer				7.096	-0.159	0.000	0.45			46.6	OK	
1.005	SWMH7	15 Winter	2	+0%	30/15 Summer				6.846	-0.129	0.000	0.59			46.8	OK	
1.006	SWMH8	15 Winter	2	+0%	2/15 Summer				6.823	0.023	0.000	1.22			67.3	SURCHARGED	
1.007	SWMH9	15 Winter	2	+0% +0%	30/15 Summer				6.700	-0.063	0.000	0.98			67.4	OK	
1.000	O T UTING	THAO MILLEL	Z	+U3	20/400 WINCEL				0.399	-0.113	0.000	0.03			5.0	UK	
							©198	32-2020	Innovyz	ze							

Ove Arup & Partners International Ltd	Page 15	
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Micro
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye
XP Solutions	Network 2020.1.3	

									Water	Surcharged	Flooded			Half Drain	Pipe		
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
3.000	SWMH11	15 Winte	r 2	+0%					10.622	-0.178	0.000	0.10			5.1	OK	
3.001	SWMH12	15 Winte	r 2	+0%					10.059	-0.141	0.000	0.29			11.0	OK	
3.002	SWMH13	15 Winte	r 2	+0%					9.685	-0.191	0.000	0.05			12.9	OK	
1.009	SWMH14	1440 Winte	r 2	+0읭	2/360 Winter				6.398	0.073	0.000	0.16			3.1	SURCHARGED	
1.010	SWMH15	1440 Winte	r 2	+0%					6.113	-0.177	0.000	0.10			3.1	OK	
4.000	SWMH16	15 Winte	r 2	+0%	30/15 Summer				7.203	-0.097	0.000	0.60			22.6	OK	
5.000	SWMH17	15 Winte	r 2	+0%	30/360 Winter				7.134	-0.166	0.000	0.15			6.9	OK	
4.001	SWMH18	1440 Winte	r 2	+0%	2/1440 Winter				7.121	0.015	0.000	0.08			2.9	SURCHARGED	
6.000	SWMH19	15 Winte	r 2	+0%	30/360 Winter				7.172	-0.128	0.000	0.37			14.0	OK	
6.001	SWMH20	1440 Winte	r 2	+0%	30/120 Winter				7.120	-0.003	0.000	0.02			1.3	OK	
4.002	SWMH21	1440 Winte	r 2	+0%	2/120 Winter				7.120	0.249	0.000	0.02			1.4	SURCHARGED	
7.000	SWMH22	1440 Winte	r 2	+0%	30/360 Winter				7.119	-0.181	0.000	0.00			0.0	OK	
4.003	SWMH23	1440 Winte	r 2	+0%	2/15 Summer				7.119	0.381	0.000	0.02			1.5	SURCHARGED	
8.000	SWMH24	15 Winte	r 2	+0%					9.639	-0.161	0.000	0.17			18.8	OK	
8.001	SWMH25	15 Winte	r 2	+0%	30/15 Summer				7.151	-0.149	0.000	0.24			24.5	OK	
4.004	SWMH26	1440 Winte	r 2	+0%	2/15 Summer				7.117	0.563	0.000	0.01			1.5	SURCHARGED	
1.011	SWMH27	1440 Winte	r 2	+0%					5.856	-0.169	0.000	0.14			4.6	OK	
9.000	SWMH28	15 Winte	r 2	+0%	30/15 Winter				6.362	-0.167	0.000	0.14			5.3	OK	
9.001	SWMH29	15 Winte	r 2	+0%	30/15 Summer				6.289	-0.103	0.000	0.19			5.5	OK	
10.000	SWMH30	15 Winte	r 2	+0%	30/15 Summer				6.378	-0.122	0.000	0.42			16.5	OK	
9.002	SWMH31	15 Winte	r 2	+0%	30/15 Summer				6.284	-0.076	0.000	0.76			28.7	OK	
11.000	SWMH32	15 Winte	r 2	+0%	100/960 Winter				6.621	-0.179	0.000	0.09			7.5	OK	
9.003	SWMH33	1440 Winte	r 2	+0%	2/1440 Winter				6.161	0.009	0.000	0.07			4.6	SURCHARGED	
9.004	SWMH34	1440 Winte	r 2	+0%	2/240 Winter				6.160	0.152	0.000	0.08			4.6	SURCHARGED	
9.005	SWMH35	1440 Winte	r 2	+0%	2/15 Summer				6.160	0.204	0.000	0.04			2.7	SURCHARGED	
12.000	SWMH36	15 Winte	r 2	+0%	100/960 Winter				6.647	-0.153	0.000	0.22			11.1	OK	
12.001	SWMH37	1440 Winte	r 2	+0%	30/360 Winter				6.159	-0.141	0.000	0.02			1.4	OK	
9.006	SWMH38	1440 Winte	r 2	+0%	2/15 Summer				6.159	0.391	0.000	0.04			1.3	SURCHARGED	
1.012	SWMH39	1440 Winte	r 2	+0%					5.536	-0.169	0.000	0.14			5.7	OK	
13.000	SWMH40	15 Winte	r 2	+0%	100/15 Summer				6.340	-0.135	0.000	0.32			11.2	OK	
13.001	SWMH41	15 Winte	r 2	+0%	30/15 Summer				6.130	-0.047	0.000	0.53			14.1	OK	
14.000	SWMH42	15 Winte	r 2	+0%	30/15 Summer				6.370	-0.095	0.000	0.59			20.5	OK	
13.002	SWMH43	15 Winte	r 2	+0%	30/15 Summer				6.122	-0.039	0.000	1.00			33.2	OK	

Ove Arup & Partners International Ltd						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Mirco				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye				
XP Solutions	Network 2020.1.3					

	IIS/MH			Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	Sto	orm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
13.003	SWMH44	15 W	Vinter	2	+0%	30/15 Winter				6.006	-0.125	0.000	0.63			46.5	OK	
15.000	SWMH45	15 W	Vinter	2	+0%	30/15 Summer				5.800	-0.105	0.000	0.12			4.1	OK	
13.004	SWMH46	15 W	Vinter	2	+0%	30/15 Summer				5.795	-0.083	0.000	0.87			48.8	OK	
16.000	SWMH47	15 W	Vinter	2	+0%	30/960 Winter				5.737	-0.158	0.000	0.14			4.8	OK	
13.005	SWMH48	15 W	Vinter	2	+0%	30/15 Winter				5.720	-0.124	0.000	0.65			57.7	OK	
17.000	SWMH49	15 W	Vinter	2	+0%	30/960 Winter				5.728	-0.137	0.000	0.32			13.0	OK	
13.006	SWMH50	1440 W	Vinter	2	+0%	30/120 Winter				5.665	-0.001	0.000	0.04			2.2	OK	
13.007	SWMH51	1440 W	Vinter	2	+0%	2/360 Winter				5.663	0.071	0.000	0.04			2.2	SURCHARGED	
18.000	SWMH52	1440 W	Vinter	2	+0%	30/240 Summer				5.661	-0.097	0.000	0.01			0.3	OK	
18.001	SWMH53	1440 W	Vinter	2	+0%	2/360 Winter				5.661	0.052	0.000	0.01			0.4	SURCHARGED	
13.008	SWMH54	1440 W	Vinter	2	+0%	2/30 Summer				5.661	0.211	0.000	0.09			2.2	SURCHARGED	
1.013	SWMH55	1440 W	Vinter	2	+0%					5.277	-0.151	0.000	0.24			7.9	OK	
1.014	SWMH56	1440 W	Vinter	2	+0%					5.171	-0.152	0.000	0.23			7.9	OK	
1.015	SWMHEx.	30 W	Vinter	2	+0%					5.050	-0.153	0.000	0.23			9.0	OK	
1.016	SWMHEx.	30 W	Vinter	2	+0%					4.930	-0.151	0.000	0.23			11.8	OK	
1.017	SWMHEx.	30 W	Vinter	2	+0%					4.778	-0.147	0.000	0.26			11.8	OK	

Ove Arup & Partners International Ltd		Page 17										
The Arup Campus	Creamfields SHD											
Blyth Gate	Planning											
Solihull B90 8AE												
Date 08/12/2021 Designed by ROD												
File SW Design_Planning (2yr SC).MDX Checked by RM												
XP Solutions Network 2020.1.3												
<u>30 year Return Period Summary o</u> :	Critical Results by Maximum Level (H	Rank 1) for Storm										
Areal Deduction Easter 1 000 Merhale Hes	Simulation Criteria	$+ 10m^{3}/bc$ Character 2,000										
Hot Start (mins) 0 Foul Sewa	e per hectare (1/s) 0.000 MADD factor	Inlet Coefficient 0.800										
Hot Start Level (mm) 0 Additional Fl	w - % of Total Flow 0.000 Flow per Person p	per Day (l/per/day) 0.000										
Number of Input Hydrographs 0	umber of Offline Controls 0 Number of Time/.	Area Diagrams O Timo Controls O										
	Ser of Storage Structures 4 Number of Rear											
	<u>ynthetic Rainfall Details</u>											
Rainfall Model FSR M5-60 (mm) 18.100 Cv (Summer) 0.750												
Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840												
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF												
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status OFF												
DTS Status OFF												
Profil	(s) Summer and Wint	er										
Duration(s) (m	ns) 15, 30, 60, 120, 240, 360, 480, 960, 14	40										
Return Period(s) (ye	rs) 2, 30, 1	00										
Climate Change	(%) 0, 0,	10										
	Water Surcharged Flooded	Half Drain Pipe										
US/MH Return Climate First (X) First (Y) First	(Z) Overflow Level Depth Volume Fl	ow / Overflow Time Flow Level										
PN Name Storm Period Change Surcharge Flood Ove	flow Act. (m) (m) (m ³) C	ap. (1/s) (mins) (1/s) Status Exceeded										
1.000 SWMH1 15 Winter 30 +0%	10.894 -0.186 0.000	0.07 7.9 ОК										
1.001 SWMH2 15 Winter 30 +0%	10.061 -0.139 0.000	0.30 10.8 OK										
1.002 SWMH3 15 Winter 30 +0%	9.932 -0.162 0.000	0.17 13.0 OK										
2 000 SWMH4 15 Winter 30 +0%	7 567 -0.008 0.000	0.34 37.0 OK 0.54 44.1 OK										
1.004 SWMH6 15 Winter 30 +0% 30/15 Summer	7.494 0.239 0.000	0.72 74.8 SURCHARGED										
1.005 SWMH7 15 Winter 30 +0% 30/15 Summer	7.358 0.383 0.000	0.95 75.2 SURCHARGED										
1.006 SWMH8 15 Winter 30 +0% 2/15 Summer	7.271 0.471 0.000	1.93 106.2 SURCHARGED										
1.007 SWMH9 15 Winter 30 +0% 30/15 Summer	7.090 0.327 0.000	1.54 106.1 SURCHARGED 0.07 6.0 SURCHARCED										
1.000 SWINIO 1440 WINCEL SU TOS SU/400 WINCEL	0.012 0.096 0.000	0.07 O.O SOKCHARGED										
	©1982-2020 Innovyze											

Ove Arup & Partners International Ltd						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Micco				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Dialitacje				
XP Solutions	Network 2020.1.3					

US/MH Return Climate First (X) First (X) First (X) First (X) Strate Depth Value Flow Overflow Return Climate Flow Strate Depth Value Flow Overflow Return Climate Strate Strate Exceeded 3.001 SMM11 15 Winter 30 +0%
PN Name Storm Period Change Surcharge Flood Overflow Act. (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeds 3.000 SWMH1 15 Winter 30 +0%
3.000 SWMH11 15 Winter 30 +0% 10.639 -0.161 0.000 0.18 9.4 OK 3.001 SWMH12 15 Winter 30 +0% 10.105 -0.095 0.000 0.60 22.9 OK 3.002 SWMH13 15 Winter 30 +0% 9.702 -0.174 0.000 0.11 27.0 OK 1.009 SWMH14 1440 Winter 30 +0% 2/360 Winter 6.702 0.377 0.000 0.10 3.1 SURCHARGED 1.010 SWMH15 1440 Winter 30 +0% 30/15 Summer 7.582 0.282 0.000 0.08 3.2 SURCHARGED 5.000 SWMH17 140 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH18 1440 Winter 30 +0% 30/360 Winter 7.581 0.475 0.000 0.01 4.2 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/360 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED <td< th=""></td<>
3.001 SWMH12 15 Winter 30 +0% 10.105 -0.095 0.000 0.60 22.9 OK 3.002 SWMH13 15 Winter 30 +0% 9.702 -0.174 0.000 0.11 27.0 OK 1.009 SWMH14 1440 Winter 30 +0% 2/360 Winter 6.702 0.377 0.000 0.16 3.1 SURCHARGED 1.010 SWMH15 1440 Winter 30 +0% 30/15 Summer 6.113 -0.177 0.000 0.10 3.1 OK 4.000 SWMH16 1440 Winter 30 +0% 30/360 Winter 7.582 0.282 0.000 0.02 1.0 SURCHARGED 5.000 SWM118 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 6.001 SWM18 1440 Winter 30 +0% 30/360 Winter 7.579 0.280 0.000 0.011
3.002 SWMH13 15 Winter 30 +0% 9.702 -0.174 0.000 0.11 27.0 OK 1.009 SWMH14 1440 Winter 30 +0% 2/360 Winter 6.702 0.377 0.000 0.16 3.1 SURCHARGED 1.010 SWMH15 1440 Winter 30 +0% 30/15 Summer 7.582 0.282 0.000 0.08 3.2 SURCHARGED 5.000 SWMH18 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH18 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH19 1440 Winter 30 +0% 30/360 Winter 7.581 0.475 0.000 0.11 4.2 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/360 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 </td
1.009 SWMH14 1440 Winter 30 +0% 2/360 Winter 6.702 0.377 0.000 0.16 3.1 SURCHARGED 1.010 SWMH15 1440 Winter 30 +0% 6.113 -0.177 0.000 0.10 3.1 OK 4.000 SWMH16 1440 Winter 30 +0% 30/15 Summer 7.582 0.282 0.000 0.08 3.2 SURCHARGED 5.000 SWMH17 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH18 1440 Winter 30 +0% 2/1440 Winter 7.581 0.475 0.000 0.11 4.2 SURCHARGED 6.000 SWMH19 1440 Winter 30 +0% 30/360 Winter 7.580 0.280 0.000 0.05 2.0 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30
1.010 SWMH15 1440 Winter 30 +0% 30/15 Summer 6.113 -0.177 0.000 0.10 3.1 OK 4.000 SWMH16 1440 Winter 30 +0% 30/15 Summer 7.582 0.282 0.000 0.08 3.2 SURCHARGED 5.000 SWMH17 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH18 1440 Winter 30 +0% 2/1440 Winter 7.581 0.475 0.000 0.11 4.2 SURCHARGED 6.001 SWMH2 1440 Winter 30 +0% 30/360 Winter 7.579 0.280 0.000 0.05 2.0 SURCHARGED 6.001 SWMH2 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH2 1440 Winter 30 +0% 2/120 Winter
4.000 SWMH16 1440 Winter 30 +0% 30/15 Summer 7.582 0.282 0.000 0.08 3.2 SURCHARGED 5.000 SWMH17 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH18 1440 Winter 30 +0% 2/1440 Winter 7.581 0.475 0.000 0.11 4.2 SURCHARGED 6.000 SWMH19 1440 Winter 30 +0% 30/360 Winter 7.580 0.280 0.000 0.05 2.0 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00
5.000 SWMH17 1440 Winter 30 +0% 30/360 Winter 7.581 0.281 0.000 0.02 1.0 SURCHARGED 4.001 SWMH18 1440 Winter 30 +0% 2/1440 Winter 7.581 0.475 0.000 0.11 4.2 SURCHARGED 6.000 SWMH19 1440 Winter 30 +0% 30/360 Winter 7.580 0.280 0.000 0.05 2.0 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00 0.00
4.001 SWMH18 1440 Winter 30 +0% 2/1440 Winter 7.581 0.475 0.000 0.11 4.2 SURCHARGED 6.000 SWMH19 1440 Winter 30 +0% 30/360 Winter 7.580 0.280 0.000 0.05 2.0 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00 0.0 SURCHARGED
6.000 SWMH19 1440 Winter 30 +0% 30/360 Winter 7.580 0.280 0.000 0.05 2.0 SURCHARGED 6.001 SWMH20 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00 0.0 SURCHARGED
6.001 SWMH20 1440 Winter 30 +0% 30/120 Winter 7.579 0.456 0.000 0.03 1.8 SURCHARGED 4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00 0.0 SURCHARGED
4.002 SWMH21 1440 Winter 30 +0% 2/120 Winter 7.579 0.708 0.000 0.03 1.8 SURCHARGED 7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00 0.0 SURCHARGED
7.000 SWMH22 1440 Winter 30 +0% 30/360 Winter 7.577 0.277 0.000 0.00 0.00 0.0 SURCHARGED
4.003 SWMH23 1440 Winter 30 +0% 2/15 Summer 7.577 0.840 0.000 0.03 1.8 SURCHARGED
8.000 SWMH24 15 Winter 30 +0% 9.663 -0.137 0.000 0.32 34.7 OK
8.001 SWMH25 1440 Winter 30 +0% 30/15 Summer 7.577 0.277 0.000 0.04 3.6 SURCHARGED
4.004 SWMH26 1440 Winter 30 +0% 2/15 Summer 7.576 1.022 0.000 0.02 1.8 SURCHARGED
1.011 SWMH27 1440 Winter 30 +0% 5.858 -0.167 0.000 0.15 4.8 OK
9.000 SWMH28 15 Winter 30 +0% 30/15 Winter 6.560 0.031 0.000 0.23 8.3 SURCHARGED
9.001 SWMH29 15 Winter 30 +0% 30/15 Summer 6.542 0.150 0.000 0.41 12.1 SURCHARGED
10.000 SWMH30 15 Winter 30 +0% 30/15 Summer 6.603 0.103 0.000 0.68 26.7 SURCHARGED
9.002 SWMH31 15 Winter 30 +0% 30/15 Summer 6.537 0.177 0.000 1.25 47.0 SURCHARGED
11.000 SWMH32 15 Winter 30 +0% 100/960 Winter 6.637 -0.163 0.000 0.17 13.9 OK
9.003 SWMH33 1440 Winter 30 +0% 2/1440 Winter 6.534 0.382 0.000 0.11 7.0 SURCHARGED
9.004 SWMH34 1440 Winter 30 +0% 2/240 Winter 6.533 0.525 0.000 0.02 1.4 SURCHARGED
9.005 SWMH35 1440 Winter 30 +0% 2/15 Summer 6.532 0.576 0.000 0.02 1.4 SURCHARGED
12.000 SWMH36 15 Winter 30 +0% 100/960 Winter 6.675 -0.125 0.000 0.40 20.4 OK
12.001 SWMH37 1440 Winter 30 +0% 30/360 Winter 6.531 0.231 0.000 0.03 2.2 SURCHARGED
9.006 SWMH38 1440 Winter 30 +0% 2/15 Summer 6.531 0.763 0.000 0.04 1.4 SURCHARGED
1.012 SWMH39 1440 Winter 30 +0% 5.539 -0.166 0.000 0.15 6.2 OK
13.000 SWMH40 15 Winter 30 +0% 100/15 Summer 6.465 -0.010 0.000 0.56 19.8 OK
13.001 SWMH41 15 Winter 30 +0% 30/15 Summer 6.413 0.236 0.000 0.77 20.3 SURCHARGED
14.000 SWMH42 15 Winter 30 +0% 30/15 Summer 6.635 0.170 0.000 0.96 33.7 SURCHARGED
13.002 SWMH43 15 Winter 30 +0% 30/15 Summer 6.402 0.241 0.000 1.55 51.5 SURCHARGED

Ove Arup & Partners International Ltd		Page 19
The Arup Campus	Creamfields SHD	
Blyth Gate	Planning	
Solihull B90 8AE		Mirco
Date 08/12/2021	Designed by ROD	
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diamaye
XP Solutions	Network 2020.1.3	

	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
13.003	SWMH44	15 Wint	er 30	+0%	30/15 Winter				6.163	0.032	0.000	0.94			69.5	SURCHARGED	
15.000	SWMH45	15 Wint	er 30	+0%	30/15 Summer				5.946	0.041	0.000	0.21			7.0	SURCHARGED	
13.004	SWMH46	15 Wint	er 30	+0응	30/15 Summer				5.933	0.055	0.000	1.33			75.0	SURCHARGED	
16.000	SWMH47	1440 Wint	er 30	+0%	30/960 Winter				5.932	0.037	0.000	0.02			0.7	SURCHARGED	
13.005	SWMH48	1440 Wint	er 30	+0%	30/15 Winter				5.932	0.088	0.000	0.12			10.4	SURCHARGED	
17.000	SWMH49	1440 Wint	er 30	+0%	30/960 Winter				5.932	0.067	0.000	0.04			1.8	SURCHARGED	
13.006	SWMH50	1440 Wint	er 30	+0%	30/120 Winter				5.932	0.266	0.000	0.54			30.6	SURCHARGED	
13.007	SWMH51	1440 Wint	er 30	+0%	2/360 Winter				6.219	0.627	0.000	0.22			12.1	SURCHARGED	
18.000	SWMH52	1440 Wint	er 30	+0%	30/240 Summer				6.187	0.429	0.000	0.15			5.0	SURCHARGED	
18.001	SWMH53	1440 Wint	er 30	+0%	2/360 Winter				6.204	0.595	0.000	0.16			5.5	SURCHARGED	
13.008	SWMH54	1440 Wint	er 30	+0%	2/30 Summer				6.270	0.820	0.000	0.09			2.2	SURCHARGED	
1.013	SWMH55	1440 Wint	er 30	+0%					5.279	-0.149	0.000	0.25			8.4	OK	
1.014	SWMH56	1440 Wint	er 30	+0%					5.173	-0.150	0.000	0.25			8.4	OK	
1.015	SWMHEx.	30 Summ	er 30	+0%					5.066	-0.137	0.000	0.32			12.9	OK	
1.016	SWMHEx.	30 Summ	er 30	+0%					4.954	-0.127	0.000	0.39			19.7	OK	
1.017	SWMHEx.	30 Summ	er 30	+0%					4.804	-0.121	0.000	0.43			19.8	OK	

Ove Arup & Partners International Ltd			Page 20								
The Arup Campus	Creamfields SHD										
Blyth Gate	Planning										
Solihull B90 8AE			Micco								
Date 08/12/2021											
File SW Design Planning (2vr SC).MDX	Drainage										
XP Solutions	Network 2020.1.3										
100 year Return Period Summary of	Critical Results b	y Maximum Level (Rank 1) for Stor	cm								
			—								
	Simulation Criteria		0.000								
Areal Reduction Factor 1.000 Manhole Head Hot Start (mins) 0 Foul Sever	loss Coeff (Global) 0.5	MADD Factor * IUm ³ /ha Storage	2.000								
Hot Start Level (mm) 0 Additional Flo	w - % of Total Flow 0.0	000 Flow per Person per Day (1/per/day)	0.000								
Number of Input Hydrographs 0 N	amber of Offline Control	ls O Number of Time/Area Diagrams O									
Number of Online Controls 4 Num	per of Storage Structure	es 4 Number of Real Time Controls U									
2	ynthetic Rainfall Detai	ils									
Rainfall Model FSR M5-60 (mm) 18.100 Cv (Summer) 0.750											
Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840											
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF											
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status OFF											
DTS Sta	itus	OFF									
Profile	(s)	Summer and Winter									
Duration(s) (mi	ns) 15, 30, 60, 120, 24	40, 360, 480, 960, 1440									
Return Period(s) (yea	rs)	2, 30, 100									
Climate Change	(%)	0, 0, 10									
	Water S	urcharged Flooded Half	Drain Pipe								
US/MH Return Climate First (X) First (Y) First	: (Z) Overflow Level	Depth Volume Flow / Overflow T	ime Flow Level								
PN Name Storm Period Change Surcharge Flood Over	flow Act. (m)	(m) (m^3) Cap. $(1/s)$ (m	ins) (1/s) Status Exceeded								
1.000 SWMH1 15 Winter 100 +10%	10.903	-0.177 0.000 0.10	11.3 ОК								
1.001 SWMH2 15 Winter 100 +10%	10.080	-0.120 0.000 0.43	15.4 OK								
1.002 SWMH3 15 Winter 100 +10%	9.945	-0.149 0.000 0.24	18.6 OK								
1.003 SWMH4 15 Winter 100 +10%	9.687	-0.113 0.000 0.49	52.9 OK								
2.000 SWMHS IS WINTER 100 +10% 100/IS Summer	8.465 8.325	1.070 0.000 0.95	99.7 SUBCHARGED								
1.005 SWMH7 15 Winter 100 +10% 30/15 Summer	8.075	1.100 0.000 1.26	100.2 FLOOD RISK								
1.006 SWMH8 15 Winter 100 +10% 2/15 Summer	7.920	1.120 0.000 2.62	144.4 FLOOD RISK								
1.007 SWMH9 15 Winter 100 +10% 30/15 Summer	7.587	0.824 0.000 2.08	143.6 SURCHARGED								
1.008 SWMH10 1440 Winter 100 +10% 30/480 Winter	6.838	0.323 0.000 0.07	5.9 SURCHARGED								
	©1982-2020 Innovyze	9									

Ove Arup & Partners International Ltd						
The Arup Campus	Creamfields SHD					
Blyth Gate	Planning					
Solihull B90 8AE		Mirco				
Date 08/12/2021	Designed by ROD					
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diginada				
XP Solutions	Network 2020.1.3					

									Water	Surcharged	Flooded			Half Drain	Pipe		
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
3.000	SWMH11	15 Winter	100	+10%					10.652	-0.148	0.000	0.25			13.4	OK	
3.001	SWMH12	15 Winter	100	+10%					10.142	-0.058	0.000	0.85			32.7	OK	
3.002	SWMH13	15 Winter	100	+10%					9.712	-0.164	0.000	0.16			38.5	OK	
1.009	SWMH14	1440 Winter	100	+10%	2/360 Winter				6.926	0.601	0.000	0.16			3.1	SURCHARGED	
1.010	SWMH15	1440 Winter	100	+10%					6.113	-0.177	0.000	0.10			3.1	OK	
4.000	SWMH16	1440 Winter	100	+10%	30/15 Summer				8.035	0.735	0.000	0.11			4.1	SURCHARGED	
5.000	SWMH17	1440 Winter	100	+10%	30/360 Winter				8.034	0.734	0.000	0.03			1.2	SURCHARGED	
4.001	SWMH18	1440 Winter	100	+10%	2/1440 Winter				8.034	0.928	0.000	0.15			5.8	SURCHARGED	
6.000	SWMH19	1440 Winter	100	+10%	30/360 Winter				8.033	0.733	0.000	0.07			2.5	SURCHARGED	
6.001	SWMH20	1440 Winter	100	+10%	30/120 Winter				8.032	0.909	0.000	0.05			2.5	SURCHARGED	
4.002	SWMH21	1440 Winter	100	+10%	2/120 Winter				8.032	1.161	0.000	0.03			2.0	SURCHARGED	
7.000	SWMH22	1440 Winter	100	+10%	30/360 Winter				8.030	0.730	0.000	0.00			0.0	SURCHARGED	
4.003	SWMH23	1440 Winter	100	+10%	2/15 Summer				8.030	1.293	0.000	0.03			2.1	SURCHARGED	
8.000	SWMH24	15 Winter	100	+10%					9.683	-0.117	0.000	0.46			49.6	OK	
8.001	SWMH25	1440 Winter	100	+10%	30/15 Summer				8.029	0.729	0.000	0.05			4.7	SURCHARGED	
4.004	SWMH26	1440 Winter	100	+10%	2/15 Summer				8.028	1.474	0.000	0.02			2.1	SURCHARGED	
1.011	SWMH27	1440 Winter	100	+10%					5.859	-0.166	0.000	0.16			4.9	OK	
9.000	SWMH28	15 Winter	100	+10%	30/15 Winter				7.008	0.479	0.000	0.32			11.8	SURCHARGED	
9.001	SWMH29	15 Winter	100	+10%	30/15 Summer				6.985	0.593	0.000	0.49			14.6	SURCHARGED	
10.000	SWMH30	15 Winter	100	+10%	30/15 Summer				7.099	0.599	0.000	0.93			36.4	SURCHARGED	
9.002	SWMH31	15 Winter	100	+10%	30/15 Summer				6.978	0.618	0.000	1.70			64.1	SURCHARGED	
11.000	SWMH32	1440 Winter	100	+10%	100/960 Winter				6.901	0.101	0.000	0.02			1.4	SURCHARGED	
9.003	SWMH33	1440 Winter	100	+10%	2/1440 Winter				6.901	0.749	0.000	0.14			9.0	SURCHARGED	
9.004	SWMH34	1440 Winter	100	+10%	2/240 Winter				6.900	0.892	0.000	0.03			1.6	SURCHARGED	
9.005	SWMH35	1440 Winter	100	+10%	2/15 Summer				6.899	0.943	0.000	0.03			1.6	SURCHARGED	
12.000	SWMH36	1440 Winter	100	+10%	100/960 Winter				6.898	0.098	0.000	0.04			2.1	SURCHARGED	
12.001	SWMH37	1440 Winter	100	+10%	30/360 Winter				6.898	0.598	0.000	0.03			2.8	SURCHARGED	
9.006	SWMH38	1440 Winter	100	+10%	2/15 Summer				6.897	1.129	0.000	0.05			1.7	SURCHARGED	
1.012	SWMH39	1440 Winter	100	+10%					5.541	-0.164	0.000	0.16			6.6	OK	
13.000	SWMH40	15 Winter	100	+10%	100/15 Summer				7.100	0.625	0.000	0.62			21.7	FLOOD RISK	
13.001	SWMH41	15 Winter	100	+10%	30/15 Summer				6.997	0.820	0.000	1.00			26.6	FLOOD RISK	
14.000	SWMH42	15 Winter	100	+10%	30/15 Summer				7.398	0.933	0.000	1.15			40.2	SURCHARGED	
13.002	SWMH43	15 Winter	100	+10%	30/15 Summer				6.978	0.817	0.000	2.02			67.1	FLOOD RISK	
							©198	2-2020 I	nnovyz	е							

Ove Arup & Partners International Ltd							
The Arup Campus	Creamfields SHD						
Blyth Gate	Planning						
Solihull B90 8AE		Micro					
Date 08/12/2021	Designed by ROD						
File SW Design_Planning (2yr SC).MDX	Checked by RM	Diginada					
XP Solutions	Network 2020.1.3						

PN	US/MH Name	Storm	Return Period	Climate	First (X) Surcharge	First (Y)	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow /	Overflow	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
				onango	0 41 01141 y 0				()	(,	()	cap.	(=/=/	((=/ =/	000000	
13.003	SWMH44	15 Winter	100	+10%	30/15 Winter				6.587	0.456	0.000	1.25			92.5	SURCHARGED	
15.000	SWMH45	1440 Winter	100	+10%	30/15 Summer				6.199	0.294	0.000	0.02			0.8	SURCHARGED	
13.004	SWMH46	1440 Winter	100	+10%	30/15 Summer				6.199	0.321	0.000	0.20			11.5	SURCHARGED	
16.000	SWMH47	1440 Winter	100	+10%	30/960 Winter				6.198	0.303	0.000	0.03			0.9	SURCHARGED	
13.005	SWMH48	1440 Winter	100	+10%	30/15 Winter				6.199	0.355	0.000	0.16			14.0	SURCHARGED	
17.000	SWMH49	1440 Winter	100	+10%	30/960 Winter				6.197	0.332	0.000	0.06			2.4	SURCHARGED	
13.006	SWMH50	1440 Winter	100	+10%	30/120 Winter				6.197	0.531	0.000	0.63			35.5	SURCHARGED	
13.007	SWMH51	1440 Winter	100	+10%	2/360 Winter				6.533	0.941	0.000	0.25			14.0	SURCHARGED	
18.000	SWMH52	1440 Winter	100	+10%	30/240 Summer				6.496	0.738	0.000	0.18			6.1	SURCHARGED	
18.001	SWMH53	1440 Winter	100	+10%	2/360 Winter				6.514	0.905	0.000	0.19			6.7	SURCHARGED	
13.008	SWMH54	1440 Winter	100	+10%	2/30 Summer				6.592	1.142	0.000	0.09			2.3	FLOOD RISK	
1.013	SWMH55	1440 Winter	100	+10%					5.282	-0.146	0.000	0.26			8.8	OK	
1.014	SWMH56	1440 Winter	100	+10%					5.175	-0.148	0.000	0.26			8.8	OK	
1.015	SWMHEx.	30 Summer	100	+10%					5.078	-0.125	0.000	0.40			16.1	OK	
1.016	SWMHEx.	30 Summer	100	+10%					4.972	-0.109	0.000	0.52			25.9	OK	
1.017	SWMHEx.	30 Summer	100	+10%					4.823	-0.102	0.000	0.57			26.1	OK	
Appendix B

SuDS features

Green Roofs

ARUP

Rain garden

ARUP

simple flow control

Outlet

٠

Permeable Paving (no infiltration)

ARUP

Bioretention systems

ARUP

Bioretention systems – Stockholm tree pits

[Image courtesy of Davies Landscape Architects]

Appendix C

Irish Water Pre-Connection Enquiry, Confirmation of Feasibility and Statement of Design Acceptance Correspondence

Note, drawings included within the Statement of Design Acceptance are superseded by the planning drawings as the red line boundary changed to incorporate the surface water discharge point to the south of the site.

Pre-connection enquiry form

UISCE Eireann : irish WATER

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink.

Please refer to the **Guide to completing the pre-connection enquiry form** on page 13 of this document when completing the form.

* Denotes mandatory/ required field. Please note, if mandatory fields are not completed the application will be returned.

Section A | Applicant details

1 *Applicant details:

Registered compa	ny r	nam	e (if	ap	olica	able):															
Trading name (if a	ppli	cab	le):																			
Company registra	tion	nur	nbe	er (if	арр	olica	ble):]	 	 	
lf you are not a reg	giste	red	con	npa	ny/t	ousi	nes	s, p	leas	e pr	ovio	de tl	he a	ppl	ican	ıt's r	nam	e:				
*Contact name:																						
*Postal address:																						
*Eircode:										•											 	
*Telephone:]					
Mobile:]					
*Email:																						
Agent details (if a	appl	lical	ble)	:																		
Contact name:																						
Company name (it	fapı	olica	able):																		
Postal address:																						
Eircode:																						
Telephone:]						
Email:																						

2

3 *Please indicate whether it is the applicant or agent who should receive future correspondence in relation to the enquiry:

	Applicant						Age	nt												
e	ction B Site	details																		
	*Site address:																			
																				Γ
			I		I		_1							1						-
	*Irish Grid co-	ordinate	s of s	site:	E	Eastir	ngs ()	X)					N	orth	nings	; (Y)				
	*Irish Grid co- Eg. co-ordinate	ordinate	s of s , O'Cc	site: onnel	E St.,	Eastir Dubl	ngs () lin:	X) E(X) 315	,878			N	orth (Y) 2	nings 234,6	5 (Y) 519				Γ
	*Irish Grid co- Eg. co-ordinate	ordinate es of GPO	s of s , O'Cc	s ite: onnel	E Il St.,	Eastir Dubl	ngs () lin:	X) E(X) 315	,878			N N	orth (Y) 2	nings 234,6	5 (Y) 519				
	*Irish Grid co- Eg. co-ordinate *Local Author	ordinate es of GPO	s of s , O'Cc	site: onnel	E Il St.,	Eastir Dubl	ngs () lin:	X) E(X) 315	,878			N	orth (Y) 2	iings 234,6	; (Y) 519				
	*Irish Grid co- Eg. co-ordinate *Local Author Local Authority	ordinate es of GPO ity: / that grai	nted p	site: onnel planr	E Il St., ning p	Eastir Dubl	ngs () lin: iissio	K) E(X n (if a) 315) 315	,878	·):		N	orth (Y) 2	nings 234,6	5 (Y) 519				Γ
	*Irish Grid co- Eg. co-ordinate *Local Author Local Authority	ordinate es of GPO ity: / that gran	nted p	site: onnel planr	E Il St., ning p	Eastir Dubl	ngs () lin: nissio	x) E(X n (if a) 315 applic	,878 able	·):		N	orth (Y) 2	1111 111 111 111 1111 1111 1111 1111 1111	s (Y) 519				T
	*Irish Grid co- Eg. co-ordinate *Local Author Local Authority	ordinate es of GPO ity: / that gran	nted p	site: onnel planr	E Il St., ning p	Eastir Dubl	ngs () lin: hissio	X) E(X n (if a) 315 applic	,878 cable	•):			orth (Y) 2	1005 234,6	5 (Y) 519				T T
	*Irish Grid co- Eg. co-ordinate *Local Author Local Authority	ordinate es of GPO ity: / that gran	nted p	site: onnel planr	E Il St., ning p	Eastir Dubl	ngs () lin: nissio	<) E(X n (if a) 315 applic	,878 able	·):			(Y) 2	11111111111111111111111111111111111111	; (Y) 519				
	*Irish Grid co- Eg. co-ordinate *Local Author Local Authority	ordinate es of GPO ity: / that gran	nted p	site: onnel planr	een į	Eastir Dubl	ngs () lin: iissio ted?	<) E(X n (if a) 315 applic	,878 cable	·):		N	orth (Y) 2	1 γ	; (Y) 519 //es			No	
	*Irish Grid co- Eg. co-ordinate *Local Author Local Authority Has full plan	ordinate es of GPO ity: / that gran	nted p	site: onnel planr on b rrent	een g	Eastir Dubl perm	ngs () lin: hissio ted? bus pl	X) E(X n (if a) 315 applic	,878 cable); 	umb	Ni Ni er:	0rth (Y) 2	111195 234,6	(Y) 519			No	

8 Please outline the domestic and/or industry/business use proposed:

Property type	Number of	units	Property type	Number of units	Property type	Number of units
House			Apartments		Agricultural	
Office			School		Retail unit	
Residential care home			Institution		Industrial unit	
Hotel			Factory		Other	
Other (please spec	ify type)					

9 *Approximate start date of proposed development:

10 *Is the development multi-phased?

If 'Yes', application must include a master-plan identifying the development phases and the current phase number.

Yes

No

If 'Yes', please provide details of variations in water demand volumes and wastewater discharge loads due to phasing requirements.

11 *Please indicate the type of connection required by ticking the appropriate box below:

Water	Please go to Section D
Wastewater	Please go to Section E
Both	Please complete both Sections D and E

Sec	tion D Water connection and demand details		
12	*Is there an existing connection to public water mains at the site?	Yes	No
12.1	If yes, is this enquiry for an additional connection to one already installed?	Yes	No
12.2	If yes, is this enquiry to increase the size of an existing connection?	Yes	No
13	Approximate date water connection is required:		
1/	*What diameter of water connection is required to service the develop	ment?	
14			
15	*Is more than one connection required to the public infrastructure		
	to service this development?	Yes	No
	If 'Yes', how many?		
	If 'Yes', how many?		

16 Please indicate the business water demand (shops, offices, schools, hotels, restaurants, etc.):

Post-development peak hour water demand	l/s
Post-development average hour water demand	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

17 Please indicate the industrial water demand (industry-specific water requirements):

Post-development peak hour water demand	l/s
Post-development average hour water demand	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

18 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?

19	What is the highest finished floo	r level of the proposed	l development above l	Malin Head Ordnance Datum
----	-----------------------------------	-------------------------	-----------------------	---------------------------

Yes	No
	Yes

m

Please include calculations on the attached sheet provided.

20

21	Are there fire flow requirements?	Yes	No	
	Additional fire flow requirements over and above those identified in Q16-17	TBC with Fire Officer	l/s	

Please include calculations on the attached sheet provided, and include confirmation of requirements from the Fire Authority.

No

22 Do you propose to supplement your potable water supply from other sources? Yes

If 'Yes', please indicate how you propose to supplement your potable water supply from other sources (see **Guide to completing the application form** on page 12 of this document for further details):

Sec	tion E Wastewater connection and discharge details	
23	*Is there an existing connection to a public sewer at the site? Yes	No
23.1	If yes, is this enquiry for an additional connection to the one already installed? Yes	No
23.2	If yes, is this enquiry to increase the size of an existing connection? Yes	No
24 25	*Approximate date that wastewater connection is required:] mm
26	*Is more than one connection required to the public infrastructure to service this development? Yes	No
	If 'Yes', how many?	
27	Please indicate the commercial wastewater hydraulic load (shops, offices, schools, hotels, restaurar	its, etc.):

Post-development peak discharge	l/s
Post-development average discharge	l/s

Please include calculations on the attached sheet provided.

28 Please indicate the industrial wastewater hydraulic load (industry-specific discharge requirements):

Post-development peak discharge	l/s
Post-development average discharge	l/s

Please include calculations on the attached sheet provided.

29 Wastewater organic load:

Characteristic	Max concentration (mg/l)	Average concentration (mg/l)	Maximum daily load (kg/day)
Biochemical oxygen demand (BOD)			
Chemical oxygen demand (COD)			
Suspended solids (SS)			
Total nitrogen (N)			
Total phosphorus (P)			
Other			
Temperature range			

pH range	

30 *Storm water run-off will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites, please indicate if the development intends discharging surface water to the combined wastewater collection system:

If 'Yes', please give reason for discharge and comment on a	dequacy of SUDS/attenuation measures proposed.

31	*Do you propose to pump the wastewater?	Yes	No	

If 'Yes', please include justification for your pumped solution with this application.

- 32 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?
- 33 What is the lowest finished floor level on site above Malin Head Ordnance Datum?

		m

No

Yes

34 What is the proposed invert level of the pipe exiting the property to the public road?

			m

Please provide the following additional information (all mandatory):

- Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details:
 - i. The scale shall be clearly indicated on the map.
 - ii. The boundaries shall be delineated in red.
 - iii. The site co-ordinates shall be marked on the site location map.
- > Details of planning and development exemptions (if applicable).
- > Calculations (calculation sheets provided below).
- Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure.
- > Conceptual design of the connection asset from the proposed development to the existing Irish Water infrastructure, including service conflicts, gradients, pipe sizes and invert levels.
- > Any other information that might help Irish Water assess this pre-connection enquiry.

Section G | Declaration

I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form.

I/We understand that any alterations made to this application must be declared to Irish Water.

The details that I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Any personal data you provide will be stored and processed by Irish Water and may be transferred to third parties for the purposes of the water and/or wastewater connection process. I hereby give consent to Irish Water to store and process my personal data and to transfer my personal data to third parties, if required, for the purposes of the connection process.

If you wish to revoke consent at any time or wish to see Irish Water's full Data Protection Notice, please see **https://www.water.ie/privacy-notice/**

Signature:	Juhal Muray	Date:	
------------	-------------	-------	--

Your full name (in BLOCK CAPITALS):

															(
	1														1 '
	1														1 '
	1														1 '
															<u> </u>
-													 		

Irish Water will carry out a formal assessment based on the information provided on this form. Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to newconnections@water.ie or alternatively, post to:

Irish Water
PO Box 860
South City Delivery Office
Cork City

Please note that if you are sending us your application form and any associated documentation by email, the maximum file size that we can receive in any one email is 35MB.

Please note, if mandatory fields are not completed the application will be returned.

Irish Water is subject to the provisions of the Freedom of Information Act 2014 ("FOIA") and the codes of practice issued under FOIA as may be amended, updated or replaced from time to time. The FOIA enables members of the public to obtain access to records held by public bodies subject to certain exemptions such as where the requested records may not be released, for example to protect another individual's privacy rights or to protect commercially sensitive information. Please clearly label any document or part thereof which contains commercially sensitive information. Irish Water accepts no responsibility for any loss or damage arising as a result of its processing of freedom of information requests.

Calculations

Water demand

Fire flow requirements

Guide to completing the pre-connection enquiry form

This form should be completed by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure.

The Irish Water Codes of Practice are available at **www.water.ie** for reference.

Section A | Applicant Details

- **Question 1:** This question requires the applicant or company enquiring about the feasibility of a connection to identify themselves, their postal address, and to provide their contact details.
- **Question 2:** If the applicant has employed a consulting engineer or an agent to manage the enquiry on their behalf, the agent's address and contact details should be recorded here.
- **Question 3:** Please indicate whether it is the applicant or the agent who should receive future correspondence in relation to the enquiry.

Section B | Site details

- **Question 4:** This is the address of the site requiring the water/wastewater service connection and for which this enquiry is being made.
- **Question 5:** Please provide the Irish Grid co-ordinates of the proposed site. Irish grid positions on maps are expressed in two dimensions as Eastings (E or X) and Northings (N or Y) relative to an origin. You will find these coordinates on your Ordnance Survey map which is required to be submitted with an application.
- **Question 6:** Please identify the Local Authority that is or will be dealing with your planning application, for example Cork City Council.
- **Question 7:** Please indicate if planning permission has been granted for this application, and if so, please provide the planning permission reference number.

Section C | Development details

- **Question 8:** Please specify the number of different property/premises types by filling in the tables provided.
- **Question 9:** Please indicate the approximate commencement date of works on the development.
- **Question 10:** Please indicate if a phased building approach is to be adopted when developing the site. If so, please provide details of the phase master-plan and the proposed variation in water demand/wastewater discharge as a result of the phasing of the development.
- **Question 11:** Please indicate the type of connection required by ticking the appropriate box and proceed to complete the appropriate section or sections.

Section D | Water connection and demand details

- **Question 12:** Please indicate if a water connection already exists for this site.
- **Question 12.1:** Please indicate if this enquiry concerns an additional connection to one already installed on the site.
- **Question 12.2:** Please indicate if you are proposing to upgrade the water connection to facilitate an increase in water demand. Irish Water will determine what impact this will have on our infrastructure.
- **Question 13:** Please indicate the approximate date that the proposed connection to the water infrastructure will be required.
- **Question 14:** Please indicate what diameter of water connection is required to service this development.
- **Question 15:** Please indicate if more than one connection is required to service this development. Please note that the connection size provided may be used to determine the connection charge.
- **Question 16:** If this connection enquiry concerns a business premises, please provide calculations for the water demand and include your calculations on the calculation sheet provided. Business premises include shops, offices, hotels, schools, etc. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.

- **Question 17:** If this connection enquiry is for an industrial premises, please calculate the water demand and include your calculations on the calculation sheet provided. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). The peak demand for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- **Question 18:** Please specify the ground level at the location where connection to the public water mains will be made. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 19:** Please specify the highest finished floor level on site. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 20:** If storage is required, water storage capacity of 24-hour water demand must usually be provided at the proposed site. In some cases, 24-hour storage capacity may not be required, for example 24-hour storage for a domestic house would be provided in an attic storage tank. Please calculate the 24-hour water storage requirements and include your calculations on the attached sheet provided. Please also confirm that on-site storage is being provided by ticking the appropriate box.
- **Question 21:** The water supply system shall be designed and constructed to reliably convey the water flows that are required of the development including fire flow requirements by the Fire Authority. The Fire Authority will provide the requirement for fire flow rates that the water supply system will have to carry. Please note that while flows in excess of your required demand may be achieved in the Irish Water network and could be utilised in the event of a fire, Irish Water cannot guarantee a flow rate to meet your fire flow requirement. To guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development. Please include your calculations on the attached sheet provided, and further provide confirmation of the Fire Authority requirements.
- **Question 22:** Please identify proposed additional water supply sources, that is, do you intend to connect to the public water mains or the public mains and supplement from other sources? If supplementing public water supply with a supply from another source, please provide details as to how the potable water supply is to be protected from cross contamination at the premises.

Section E | Wastewater connection and discharge details

- **Question 23:** Please indicate if a wastewater connection to a public sewer already exists for this site.
- Question 23.1: Please indicate if this enquiry relates to an additional wastewater connection to one already installed.
- **Question 23.2:** Please indicate if you are proposing to upgrade the wastewater connection to facilitate an increased discharge. Irish Water will determine what impact this will have on our infrastructure.
- **Question 24:** Please specify the approximate date that the proposed connection to the wastewater infrastructure will be required.
- Question 25: Please indicate what diameter of wastewater connection is required to service this development.
- **Question 26:** Please indicate if more than one connection is required to service this development. Please indicate number required.
- **Question 27:** If this enquiry relates to a business premises, please provide calculations for the wastewater discharge and include your calculations on the attached sheet provided. Business premises include shops, offices, hotels, schools, etc. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.
- **Question 28:** If this enquiry relates to an industrial premises, please provide calculations for the wastewater discharge and include your calculations on the calculation sheet provided. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). The peak discharge for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.

- **Question 29:** Please specify the maximum and average concentrations and the maximum daily load of each of the wastewater characteristics listed in the wastewater organic load table (if not domestic effluent), and also specify if any other significant concentrations are expected in the effluent. Please complete the table and provide additional supporting documentation if relevant. Note that the concentration shall be in mg/l and the load shall be in kg/day. Note that for business premises (shops, offices, schools, hotels, etc.) for which only domestic effluent will be discharged (excluding discharge from canteens/ restaurants which would require a Trade Effluent Discharge licence), there is no need to complete this question.
- **Question 30:** In exceptional circumstances, such as brownfield sites, where the only practical outlet for storm/ surface water is to a combined sewer, Irish Water will consider permitting a restricted attenuated flow to the combined sewer. Storm/surface water will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer and the applicant must demonstrate how the storm/surface water flow from the proposed site is minimised using sustainable urban drainage system (SUDS). This type of connection will only be considered on a case by case basis. Please advise if the proposed development intends discharging surface water to the combined wastewater collection system.
- **Question 31:** Please specify if the development needs to pump its wastewater discharge to gain access to Irish Water infrastructure.
- **Question 32:** Please specify the ground level at the location where connection to the public sewer will be made. This is required to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 33:** Please specify the lowest floor level of the proposed development. This is required in order to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 34:** Please specify the proposed invert level of the pipe exiting the property to the public road.

Section F | Supporting documentation

Please provide additional information as listed.

Section G | Declaration

Please review the declaration, sign, and return the completed application form to Irish Water by email or by post using the contact details provided in Section G.

Richard Murphy

One Albert Quay Cork City Co. Cork T128XN

25 January 2021

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: CDS20008019 pre-connection enquiry - Subject to contract | Contract denied Connection for Multi/Mixed Use Development of 811 unit(s) at Kinslae Road, Cork, Co. Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Kinslae Road, Cork, Co. Cork (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>		
Water Connection	Feasible without infrastructure upgrade by Irish Water		
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water		
SITE SPECIFIC COMMENTS			
Water Connection	Connection can be made to the watermain on the Kinsale Road		
Wastewater Connection	Please note that according to our records there is an existing sewer running through this site (see drawing attached). It will not be permitted to build over any Irish water infrastructure. The layout of the development must ensure that this pipe is protected and adequate separation distances are provided between Irish Water infrastructure and any structures on site. Alternatively you may enter into a diversion agreement with Irish Water and divert the pipe to accommodate your development. If you wish to proceed with this option please contact with Irish Water at Diversions@water.ie and submit detailed design drawings before submitting your planning application. It will be necessary to provide a wayleave over this pipe to the benefit of Irish Water and ensure that it is accessible for maintenance. The foul sewer connection point shall be the existing or diverted sewer. It is noted that a portion of this site will have to be pumped to reach this		

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

N.

Connection point. The pumping station shall be constructed such that it can serve the area to the south of the development. The design of the pumping station shal be agreed with Irish Water. The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection

The map included below outlines the current Irish Water infrastructure adjacent to your site:

agreement.

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore, in advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. Please submit your design to <u>CDSDesignQA@water.ie</u>

If you have any further questions, please contact Brian O'Mahony from the design team on 022 52205 or email bomahony@water.ie For further information, visit **www.water.ie/connections**.

Yours sincerely,

Monne Massis

Yvonne Harris Head of Customer Operations

Watfore Limited c/o

AURP One Albert Quay Cork City, T128XN

7 February 2022

Re: Design Submission for Kinslae Road, Cork, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS20008019

Dear Richard Murphy,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

A resubmission of the water and wastewater network proposal is to be submitted to Irish Water for review at Connection Application stage to finalise the design including the wastewater pump station. This letter does not cover the proposal to divert the sewer running through the proposed site

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: PJ Murphy Phone: 022 52267 Email: pjmurphy@water.ie

Yours sincerely,

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Gronne Massis

U Yvonne Harris Head of Customer Operations

Appendix A

Document Title & Revision

- 252666-ARUP-ZZ-XX-DR-C-1000 P02
- 252666-ARUP-ZZ-XX-DR-C-2000 P06
- 252666-ARUP-ZZ-XX-DR-C-2100 P04
- 252666-ARUP-ZZ-XX-DR-C-3000 P04

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Stlürthöirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn O'Driscoll, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Do not scale

m MH4	Com MH5	Com MH6	Com MH7	
F1,003 750	F 1.004 750	F1,005 750		F1,006 750
<u> 381,0 </u>	381.U	<u>381,U</u>	100	381'n
۲ ۲ ۲		0 0 0 0 0 0 0 0 0 0 0 0 0 0	0004	
۲ ۲				
30,995	54,653	30,491		72,524

	Com MH3 Com MH4	Com MH5	Com MH6 C	om MH7	<u>Com MH8</u>	 All foul water drainage to be designed an constructed in accordance with Irish Water of Practice and Standard Details. All pipework shall be Polypipe Polyse fittings, or similar approved. All pipes to have a minimum cover of in non-trafficable areas and 1.2m in trareas. Refer to drawing 252666-ARUP-ZZ-XX-DR-C-2000 for Proposed Foul Water Layout. Refer to drawing
						252666-ARUP-ZZ-XX-DR-C-6000 an for drainage details.
						P04 18/01/22 RM RM Issued for Information
						P0320/12/21WCRMIssued for InformationP0218/11/21RMRMIssued for Information
	E1002 E1003	F1004	F1005	F1006		P0104/11/21RODRMIssued for InformationRevDateByChkd
	750 750 381.0 81.0 750 381.0 750 750 750 750 750 750 750 75	750 381.0	750 381,0	<u>750</u> 381.0		ARUP One Albert Quay Cork, Ireland
						Tel +353 (0)21 427 7670 Fax +353 (0)21 427 2345 www.arup.com Client
		2 /				CREAMRELDS
7,365	7,365	N N N N N N	7,084		0 Ú	Project Title Creamfields Residential
7.365	21.714 21.714	NN NN NN 5 54.653	780 1 1 1 1 1 1 1 1 1 1 1 1 1	72.524		Project Title Creamfields Residential Development

Appendix D

Combined Sewer Diversion File Note

File Note

ARUP

One Albert Quay		t +353 21 422 3200	
Cork T12 X8N6			
Ireland			
www.arup.c	om		
Project title	Creamfields Residential Development	Job number	
		252666	
сс		File reference	
		252666-ARUP-XX-XX-FN-C- 0001	
Prepared by		Date	
		16 February 2022	
Subject	Irish Water Combined Sewer Diversion		

1 Introduction

This note supports the diversion application submitted to Irish Water as part of the proposed Creamfields Residential Development. This note should be read in conjunction with the following drawings:

Drawing No.	Drawing Title
252666-ARUP-ZZ-XX-DR-C-2000	Proposed Foul Water Layout
252666-ARUP-ZZ-XX-DR-C-2100	Proposed Combined Sewer Longsection
252666-ARUP-ZZ-XX-DR-C-2101	Existing Combined Sewer Longsection
252666-ARUP-ZZ-XX-DR-C-6000	Proposed Drainage and Water Details Sheet 1 of 2
252666-ARUP-ZZ-XX-DR-C-6001	Proposed Drainage and Water Details Sheet 2 of 2

Supplementary information is provided within the Appendices of this note as follows:

Appendix A – Existing combined sewer Microdrainage model results

Appendix B – Diverted combined sewer Microdrainage model results

Appendix C – Brochure & Data Sheet for indicative proposed diverted sewer product

\GLOBAL\EUROPE\CORKJOBS\252000/252666-00\4. INTERNAL\4-04 REPORTS\4-04-01 BUILDINGS\CIVIL\IRISH WATER DIVERSION NOTE\252666-ARUP-XX-XX-FN-C-0001.DOCX

File Note

252666 16 February 2022

Appendix A

\GLOBAL\EUROPE\CORKJOBS\252000\252666-00\4. INTERNAL\4-04 REPORTS\4-04-01 BUILDINGS\CIVIL\IRISH WATER DIVERSION NOTE\252666-ARUP-XX-XX-FN-C-0001.DOCX
Ove Arup & Partners Internationa	al Ltd Page 1
The Arup Campus	
Blyth Gate	
Solihull B90 8AE	Micro
Date 18/11/2021 17:58	Designed by Richard.Murphy
File Existing Combined Sewer	Checked by
XP Solutions	Network 2020.1.3
FOUL	SEWERAGE DESIGN
<u>Network D</u>	<u>esign Table for Storm</u>
PN Length Fall Slope Area Hous	ses Base n HYD DIA Section Type Auto
F1.000 21.858 0.220 99.4 0.000	0 0.0 0.012 o 450 Pipe/Conduit 🔒
F1.001 40.780 0.100 407.8 0.000	0 0.0 0.012 o 450 Pipe/Conduit
F1.002 77.255 0.710 108.8 0.000	0 0.0 0.012 o 600 Pipe/Conduit
FI.003 /6.690 0.210 365.2 0.000	0 0.0 0.012 0 600 Pipe/Conduit 👸
Netwo	ork Results Table
PN US/IL Σ Area Σ Base	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow
(m) (ha) Flow (l/s)	(l/s) (mm) (m/s) (m/s) (l/s) (l/s)
F1 000 8 000 0 000 0 0	0 0 0 0 0 1 05 200 0 0 0
F1 001 7 780 0 000 0.000 0.00	
F1.002 7.680 0.000 0.0	0 0.0 0 0.00 2.26 637.7 0.0
F1.003 6.970 0.000 0.0	0 0.0 0 0.00 1.23 348.1 0.0

©1982-2020 Innovyze

File Note

252666 16 February 2022

Appendix B

\GLOBAL\EUROPE\CORKJOBS\252000\252666-00\4. INTERNAL\4-04 REPORTS\4-04-01 BUILDINGS\CIVIL\IRISH WATER DIVERSION NOTE\252666-ARUP-XX-XX-FN-C-0001.DOCX

Ove Arup & Partners Internationa	Page 1	
The Arup Campus	Creamfields Residential	
Blyth Gate	Development	
Solihull B90 8AE		Micro
Date 04/11/2021	Designed by ROD	
File Proposed Combined Sewer	Checked by RM	Diamage
XP Solutions	Network 2020.1.3	

FOUL SEWERAGE DESIGN

<u>Network Design Table for Foul - Main</u>

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type
F1.000	6.992	0.018	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit
F1.001	67.589	0.179	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit
F1.002	18.922	0.050	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit
F1.003	31.695	0.084	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit
F1.004	51.856	0.137	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit
F1.005	30.145	0.080	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit
F1.006	72.595	0.192	378.0	0.000	0		0.0	1.500	0	750	Pipe/Conduit

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
F1.000	7.550	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0
F1.001	7.532	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0
F1.002	7.353	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0
F1.003	7.303	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0
F1.004	7.219	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0
F1.005	7.082	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0
F1.006	7.002	0.000	0.0	0	0.0	0	0.00	1.28	567.2	0.0

File Note

252666 16 February 2022

Appendix C

\GLOBAL\EUROPE\CORKJOBS\252000\252666-00\4. INTERNAL\4-04 REPORTS\4-04-01 BUILDINGS\CIVIL\IRISH WATER DIVERSION NOTE\252666-ARUP-XX-XX-FN-C-0001.DOCX

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

CONCRETE PIPES

CONTENTS PAGE

Table of Contents

CONTENTS PAGE	2
INTRODUCTION	3
PRODUCTION OF CONCRETE PIPES	4
QUALITY CONTROL AND TESTING	5
QUALITY CONTROL AND TESTING	6
TECHNICAL SPECIFICATIONS	7
LAMELL RUBBER GASKET	8
LAMELL RUBBER GASKET	9
POSITIONING OF RUBBER GASKET	. 10
INCORRECT POSITIONING OF RUBBER GASKET	.11
PRECAST CONCRETE MANHOLES TO I.S.420	. 16
PRECAST CONCRETE MANHOLES TO I.S.420: 1989	.17
AVAILABLE MANHOLE BASE PLANS IN 1200MM Ø BASES	. 18
MANHOLES	. 19
CONDRON CORBEL SLABS/ADJUSTING UNITS	. 20
CONDRON MANHOLE COVER	.21
CATCH PITS	. 22
RECTANGULAR GULLIES TO BS 5911 - 6:2004	.23
CIRCULAR GULLIES TO BS 5911 – 6: 2004	.24
CONDRON HEADWALL	.25
CONDRON HEADWALL	.26
HANDLING / PIPE JOINTING	.27
LAYING PIPES	. 28
LAYING PIPES	. 29
LAYING PIPES	. 30
LAYING PIPES	.31
SITE TESTING AND INSPECTION OF PIPELINE	. 32
SITE TESTING AND INSPECTION OF PIPELINE	. 33
STRUCTURAL DESIGN	. 34
STRUCTURAL DESIGN	. 35
STRUCTURAL DESIGN	. 36
STRUCTURAL DESIGN / BEDDING CLASSES	. 37
STRUCTURAL DESIGN	. 38
STRUCTURAL DESIGN	. 39
STRUCTURAL DESIGN	.40
HYDRAULIC DESIGN	.41
HYDRAULIC DESIGN	.42
HYDRAULIC DESIGN	.43
HYDRAULIC DESIGN	.44
PRODUCT DATA SHEET	.45
SAFETY	.45
CONCRETE ROOF TILES	.46

ndron Concrete Wor

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

INTRODUCTION

Condron Concrete Works is a 100% Irish owned Private Company founded in 1969 by John Condron. It is located just outside Tullamore, Co. Offaly, Ireland. The Company manufactures Concrete Pipes, Manholes and Gulley Traps as well as Concrete Roof Tiles and Accessories.

Production can be divided into four main categories:

- OGEE pipes which are used mainly for Surface Water Drainage, Land Drainage etc. Diameters range from 150mm to 1200mm with perforated pipes available up to 600mm.
- Spigot and Socket (S&S) pipes used for Foul and Surface Water Sewers and Culverts and are produced in diameter sizes from 150mm to 2100mm.
- Manhole bases, rings and covers. Gullies, Bends, Saddles and Junctions, as well a wide range of sealing methods.
- Concrete Roof Tiles are produced in seven different profiles – Concrete Pantiles, Concrete Slate Tiles, Concrete Bullnose Slate Tiles, 3 in 1 Tile / Cladding Tiles Concrete Plain Tiles / Cladding Tiles, M Profile and Condron Slate. Colours ranging through Black, Grey, Brown, Red, Marigold, Terracotta, and a range of Streaky colours are available. Details are in our Concrete Tile Brochure which is available by contacting our office or on our website.

Specials of all products can be manufactured and supplied "to order".

Ogee pipes are manufactured a metre long. S&S vary from 1.25 metres for 150mm and 225mm diameter, to 2 metres for 300mm diameter, and 2.5 metres for all other sizes.

All our pipes are manufactured and certified to relevant European (EN) and Irish (IS) Standards Specifications and are regularly inspected by officials from National Standards Authority of Ireland (NSAI). Daily routine Quality Control is also carried out by our own team of engineers to ensure that highest standards are maintained at all times.

Certificates of Compliance to the relevant Standard on which the products comply are available on request.

Information on all our piping products is given in the following pages and further information is available, if required, from our office at Arden Road.

The information contained within this brochure is available on our web site.

Condron Concrete Works Arden Road, Tullamore, Co. Offaly. Telephone: + 353 (0) 57 93 49000-9 Fax: + 353 (0) 57 9341565 E-mail: <u>condronconcrete@eircom.net</u> Web: www.condronconcrete.com

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

PRODUCTION OF CONCRETE PIPES

Materials

All our products are manufactured using highest quality aggregates, which come from our own quarries and sand pits. Our batching and mixing procedures are fully computerised producing low water to cement ratio, high strength, concrete.

Reinforcement

Reinforcement cages required for the Spigot & Socket pipes are produced from Cold Drawn High Tensile Steel on our automatic welding machines.

I.S.6: Concrete Sewer Pipe

This specification deals with the manufacture and properties of flexible jointed concrete pipes and fittings, either reinforced with steel or unreinforced, intended to be used for the conveyance of sewage, or sewage and surface water at atmospheric pressure. These test requirements may be found in I.S. 6: 2004 and are to be used in conjunction with ISEN 1916: 2004. These new Standards are also be available from NSAI.

Material Comparison

To assist in choosing between rigid and flexible pipes, consider the following:

Table 1

Attribute	Concrete	Plastic
Proven Durability	YES	NO
Non-Flammable	YES	NO
High Impact Strength	YES	NO
Structural Strength	YES	NO
Principally in pipe rather than		
surround		
Rigid Under Load	YES	NO
Copes with poor quality	YES	NO
installation		
Copes with high pressure	YES	NO
water jetting		
Contains Rats in sewers	YES	NO
Self weight inhibits floatation	YES	NO
Diameters from DN 225	YES	NO
To DN 2100		
Availability of complete	YES	NO
pipeline system		

Reinforcement Cage for 1500ø I.S. 6 Pipe

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

QUALITY CONTROL AND TESTING

Quality Control and Testing

The requirements of I.S.6 2004 and ISEN 1916 are such that the pipes are tested at the place of manufacture to ensure that they are adequate for the purpose intended.

The following tests are carried out in compliance with the Standard on a daily basis by our Quality Control Team and are audited regularly by N.S.A.I. to ensure full compliance with the current Standard.

Table 2

Test	Purpose
Crush Test (proof)	To ensure reinforced pipes stand up to 80% of the minimum Crush Load before developing cracks.
Crush Test (min.)	To ensure all pipes are capable of withstanding the specified minimum Crush Load without collapse.
Hydrostatic Test	To assess the permeability of the pipe walls.
Water Absorption	To assess the quality and density of the concrete.
Joint Deflection	To ensure the flexibility of the pipe joints to the minimum angular deflection specified.
Joint Straight Draw	This enables us to guarantee joints will remain watertight with a 20mm gap between pipes.
Joint Shear	To prove that a joint will remain watertight when a load is applied.
Cover to Reinforcement	To monitor that all the reinforcement is protected by minimum of 15mm cover.

Gauging of 1050mm Ø Pipe

In-house Material Testing

Quality Control Inspection

Production Quality Control

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

QUALITY CONTROL AND TESTING

750mm ø I.S. 6 Pipe undergoing Hydrostatic Test

1200mm ø I.S. 6 Pipe undergoing Crush Test

Spigot and Socket Type Pipe (S & S)

Rebated Type Pipe

Table 3

A	В	С	D		
Pipe ¬	Length	Approx.	Approx.	Approx.	Pipe
-	(m)	Outside	Wall	Weight	Туре
		~	Thickness	in kgs	
		(mm)	(mm)		
		O/D			
150mm	1.25	290	33	80	S & S
225mm	1.25	392	38	122	S & S
300mm	2.0	505	60	358	S & S
375mm	2.5	606	65	565	S & S
450mm	2.5	707	69	730	S & S
525mm	2.5	808	77	980	S & S
600mm	2.5	909	91	1240	S & S
675mm	2.5	1008	97	1520	S & S
750mm	2.5	1016	111	1840	S & S
900mm	2.5	1183	122	2380	S & S
1050mm	2.5	1420	128	3040	S & S
1200mm	2.5	1605	138	3880	S & S
1350mm	2.5	1805	152	4640	S & S
1500mm	2.5	2012	150	5800	S & S
1650mm	2.5	2155	178	6900	S & S
1800mm	2.5	2310	203	8240	S & S
2100mm	2.5	2525	211	9560	Rebated
2400mm	2.5	2866	230	11600	Rebated

I.S. 6: 2004 is to be used in conjunction with ISEN 1916: These pipes can also be manufactured to customers' own specification if so required. Rockers and Butt pipes are also available in 1-metre

Rockers and Butt pipes are also available in 1-metre length in all sizes.

OGEE PIPES

Table 4

"A" Internal Diameter	B Length	Approx. Wall Thickness (mm)	Approx. Weight in kgs
225mm	1 Metre	35	65
300mm	1 Metre	37	86
375mm	1 Metre	38	124
450mm	1 Metre	46	167
525mm	1 Metre	47	210
600mm	1 Metre	54	278
750mm	1 Metre	75	470
900mm	1 Metre	95	710
1050mm	1 Metre	100	870
1200mm	1 Metre	110	1110

Ogee pipes are manufactured to I.S. 166: 1972 specification

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

LAMELL RUBBER GASKET

The newcomer, which gives your concrete pipe uplift.

1. Wide arc of sealing with a special profile: Larger angular deflection than obtainable with traditional rubber joints – and more axial movement in the joint.

2. A special surface structure: Ensures absolute tightness even if the joint has minor scratches. 4. The sliding mantle rests between jointing surfaces of the socket and the spigot: takes over and distributes shear forces from for example traffic load over an angle up to 180° (patented) and functions as an elastic force transfer element.

5. The closed sliding mantle contains a lubricant inside: Lamell is clean and easy to handle (no extra lubricant needed) and it functions like a sliding ring. Together with the special design of the joint, it makes the alignment during jointing operation fast and efficient.

3. Easily and simply placed direct on spigot end of the pipe before installation. No wrong placing possible – and it stays where it is placed.

Today, it is normal to use either roll-in type or sliding ring joints on concrete pipes. Both of them have well-known advantages as well as disadvantages. But the demands for tightness and strength of pipe systems have been increased, however. The inventor of the brilliant Lamell system has considered this. The Lamell joint has been developed in cooperation with contractors, concrete pipe manufacturers, and pipe machine producers. This ensures that the Lamell joint combines the advantages of all known types of joint without having their disadvantages.

Because of the design of the Lamell joint and the elasticity and the configuration of the Lamell gasket, the compression of the Lamell gasket will always be within the needed limits, as well as the tightening area will not change within the tolerance limits. This ensures an absolutely tight pipeline.

The Lamell joint can be used in connection with all known dimensions and shapes of pipes for sewer and low head pressure systems as well as for manhole systems. 6. Internal Locking barbs in the mantle; ensures that the joints are locked in home position.

Gasket position prior to joint connection

Gasket position during joint connection

Gasket position after joint connection Correct Gasket Fitting

LAMELL RUBBER GASKET

The Lamell gasket is patented.

Because of the combined strength and elasticity of the Lamell gasket, and because the limited annular space between the concrete surfaces formed by the socket and spigot is occupied by the sliding mantle, the intrusion of root webs from plants and trees is prevented automatically.

Furthermore the joint is designed for automatic and mechanical installation of pipes in order to reduce the manual handling in the trench.

The Lamell gasket meets for example the specifications of: D.S.421.2 - SS 367611 - B.S.I.2494 (2) - ASTM 443 - ASTN 505 - ISO/DIS 4633 - ASTM-361.

The Lamell gaskets are normally delivered in a SBR-rubber compound and are resistant to all substance normally found in ordinary drainage and sewer systems and are resistant to microbiological attacks from anaerobes.

Lamell gaskets can be delivered in an oil resistant Neoprene quality as well as in an EPDM-quality.

Please ask for more technical details if necessary.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

POSITIONING OF RUBBER GASKET Illustration shows the correct position of the Rubber Gasket **Spigot Type A Spigot Type B** (225, 300, 375, 450, 525, 750,900mm) (600, 675, 1050, 1200, 1350, 1500, 1800, 2100mm) Application of gasket. CORRECTLY PLACED SEAL 1. Clean the Spigot and the Socket of the previous pipe with a damp cloth ensuring no debris will interfere with the joint. 2. Apply the gasket as illustrated for spigot type A or type B. No lubricant required. 3. Check that the gasket is evenly tensioned all the way round. 4. Finally check to ensure that the gasket has not protruded onto the higher lip of the Spigot. 5. When jointing check for proper horizontal and vertical alignment of the two pipes so the gasket rolls correctly and neatly into position giving a watertight joint. 6. Prior to the pipe being fitted into its final position all gaskets should be checked to ensure twisting has not occurred, particularly if the alignment of the pipe has been altered. **Correct Gasket Fitting** Spigot

INCORRECT POSITIONING OF GASKET

JUNCTIONS

Branches from 100mm upwards, can be fitted for either Ogee, Spigot and Socketed or Rebated Pipes Junctions are normally produced in 150/225/300mm range with branches from 100mm to 300mm. Junctions in larger diameters can be produced to customers' requirements.

Junctions are only fitted to full-length pipes.

We also supply saddles in 100/150/225mm diameters, which can be adopted to fit all pipe sizes.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

BENDS AND BACKDROPS

Permissible angles under I.S.6: as follows:

Table 6

Nominal Size

Permissible Angle

mm	Ŭ
150	90°, 45°, 22½°
225	90°, 45°
300/600	45°,
Bends are produced in any	y angle at request.

Larger diameter bends can be made

Bends are manufactured for both Ogee and S&S joints and are so designed as to include 100mm straight section on both spigot and socket ends, so as to improve the hydraulic characteristics of the bend.

Table 7 Minimum Invert-to-Invert Backdrops.						
Pipe Diameter mm	Drop Size	T +2 x 45° Bends (min)				
225mm Ø	225mm	725mm				
300 to 450mm Ø	300mm	800mm				
300 to 450mm Ø	375mm	1180mm				
525 to 675mm Ø	450mm	1180mm				
525 to 675mm Ø	525mm	1380mm				
750 to 900mm Ø	600mm	1500mm				

Shallower inverts can be supplied by using a Y backdrop and a 45° bend.

Backdrop Junction

Junctions and Bends are manufactured in accordance with I.S.6. They have the same wall thickness and internal diameters as the pipes with which they are to be used. Junctions are manufactured from components produced by the vertically cast process, but the whole of the branch, the main incorporating the branch, and bends, should be encased in a concrete surround designed to withstand external loads.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

SULPHATE RESISTANT / BITUMEN COATED PIPES

SULPHATE RESISTANT (S.R.) PIPES

In the rare conditions where sulphuric acid is present in the ground water or where internal acid attack is thought likely, Sulphate Resistant concrete pipes should be used. These are made to order and to comply with sulphate class 4b of I.S. 6: 2004 Table 2 and give a high-class resistance to attack. High Sulphate Resistant Hydraulic Cement is used in concrete exposed to severe sulphate action, principally where soils or ground waters have high sulphate content. It gains strength more slowly than General Use hydraulic cement. Use of a low water-to-cementing-materials ratio and low permeability are critical to the performance of any concrete exposed to severe sulphate attacks. Like other Portland cements, it is not resistant to acids and other highly corrosive substances.

Ground Granulated Blastfurnace Slag (GGBS) is added to concrete by addition at the concrete mixer, along with ordinary cement, aggregates and water. The normal ratios and proportions of aggregates and water to cementitious material in the mix remain unchanged. Mixing times are the same as for ordinary cement. Both wet mixing and dry mixing processes can be used for making concrete with GGBS.

GGBS is used as a direct replacement for ordinary cement, and replaces ordinary cement on a one-to-one basis by weight. Replacement rates for GGBS vary from 30% to up to 85%. Typically 50% is used in most instances. Higher replacement rates up to 85% are used in specialist applications such as in aggressive environments and to reduce heat of hydration.

Sulphate C	ass	Cem	ement Group Minimum Cementitious Content (kg/m ³)				
2				Reinforced Units	Unreinforced Units		
	1			360	330		
		2		360	300		
		3		360	300		
3		1		380	380		
		2		360	340		
		3		360	320		
4a		2		360	360		
		3		360	360		
4b		2		360	360		
		3		360	360		
5		Seek	the Advice from the Manuf	acturer			
Extract fro	m Table 2 Ceme	entitio	us Content I.S. 6:2004				
Cement	Factory Produce	d or	Composition/ Specification	n			
Group	Combination						
-	(FP or COM)						
1	FP		Portland cement conformi	Portland cement conforming to CEM 1 as specified in I.S. EN 197-1			
			Portland blastfurnace cerr	nent conforming to BS 146			
			Portland pfa cement confo	prming to CEM II/B-V as sp	ecified in I.S. EN 197-1		
	COM		Combination of Portland of	ement conforming to CEM	1 as specified in I.S. EN 197-1		
			and ggbs conforming to BS 6600 containing no less than 36% and not more than				
			65% ggbs by mass of ggbs plus cement				
			Combination of Portland c	cement conforming to CEM	1 as specified in I.S. EN 197-1		
			and pfa conforming to BS	3892-1 containing no less	than 21% and not more than		
			35% pta by mass of pta p	lus cement			
2	FP		Portland pfa cement confo	orming to CEM II/B-V as sp	ecified in I.S. EN 197-1		
	0014		Containing not less than 2	6% PFA by mass of nucleu			
	COM		Combination of Portland C	S 6600 contorming to CEM	1 as specified in I.S. EN 197-1		
	and ggbs conforming to BS 6699 containing no less than 70% and not more than						
			Combination of Portland of	pomont conforming to CEM	1 as specified in LS EN 107.1		
		and the conforming to BC 2000 1 containing to USENT 1 as specified in 1.5. EN 197-1					
			40% of a by mass of puck				
3	FP		Sulphate resisting Portlan	d cement conforming to BS	\$ 4027		

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

PRECAST CONCRETE MANHOLES TO I.S.420

Condron Concrete Works produce a complete range of manhole components, all of which are certified to I.S. 420: 1989 and I.S. 420: 2004 in conjunction with ISEN 1917 and supersedes I.S. 420: 1989 in October 2004.

Advantages of Precast Manholes:

The main advantages of precast concrete manhole units over insitu concrete construction are:

- 1. Units are factory produced to I.S. 420: 1989, I.S. 420: 2004 and I.S. EN 1917.
- 2. They are manufactured in wide range of sizes and depths.
- 3. They are simple to assemble requiring relatively unskilled labour on site.
- 4. Units are capable of being constructed as flexible watertight structures.
- 5. They are supplied fitted with non slip steps to EN 13101: 2002 Class C.
- 6. The structure is durable with its own inherent strength.

Base Units:

The diameter of our Manhole Base is 1200mm and as can be seen from Table 11, an extensive range of channel sizes and floor plans are available which would cater for the vast majority of site requirements. The all socketed units are designed so that a seal can be provided on all connections, with double spigoted sections available for connecting the outlet to the socket of the first downstream pipe.

The 150mm, 225mm and 300mm channel sizes are also available with sockets and gaskets suitable for use with plastic pipes.

Heights and Weights of Manhole Bases are as shown on Tables 9 and 10.

Chamber/ Inspection Units:

All chamber sections are fitted during manufacture with 350mm wide plastic coated aluminium rung steps, which are spaced 250mm apart, thereby providing a uniform step interval in all units. The black polyethylene covering

on the steps is resistant to nearly all media and also prevents sparking when walked on with iron-mounted boots. The steps comply to EN 13101: 2002 Class C Chamber Rings can be supplied reinforced if required. All sections are jointed using our CS 202 Butyl Sealant giving an immediate and flexible watertight joint.

Heights of chamber sections are as shown on Table 6. NOTE: All chamber sections are to be stored vertically on site to prevent rolling.

Cover Slabs:

The cover slabs, which are all reinforced, have a different thickness for different diameters. All are provided with a 600mm diameter opes and a socketed base which allows a butyl sealant joint to the top chamber section.

Table 8 **Cover Slab** Overall Effective Approx. Weight Dia. Approx. Approx. Thickness Thickness (kg) 900mm 230mm 170mm 340 230mm 480 1050mm 160mm 1200mm 230mm 150 mm 580 1350mm 300mm 200mm 1020 1500mm 300mm 200mm 1260 1800mm 300mm 200mm 1780 2100mm 350mm 230mm 3200 2400mm 380mm 250mm 4140

Quality Control and Testing

I.S. 420: 1989, I.S. 420: 2004 and ISEN 1917 incorporates routine water absorption tests, works proof load tests, maximum load tests, cube crushing tests, cover to reinforcement, complete manhole hydrostatic test and installed step tests. Our Quality Control Team carries these tests out daily to ensure compliance to the relevant standards.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD. ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

PRECAST CONCRETE MANHOLES TO I.S.420: 1989

Precast concrete cover slab showing the approx. location of the access ope in the cover slab over the access steps to EN 13101: 2002 Class C.

Precast concrete manhole ring on base with access steps. to EN 13101: 2002 Class C.

Manhole Cover Slab Showing Access Ope

Precast concrete cover slabs should always be stored horizontally on site.

Precast concrete manholes and bases should always be stored vertically on site.

1200mm ø, 1 Meter high Manhole Ring positioned on Base Heights and weights of Chamber Rings

Table 9

Internal Diameter of	I Diameter of Wall Thickness		Height (Approx Weight in kgs)			
Chamber Rings	(Approx.)	1.00m	0.75m	0.50m	0.25m	
900mm	95mm	630	-	325	205-	
1050mm	100mm	820	-	420	215	
1200mm	110mm	1120	-	570	290	
1350mm	140mm	1660	1250	850	-	
1500mm	155mm	2080	1565	1050	-	
1800mm	160mm	2420	-	1120	-	
2100mm	155mm	3000	-	1520	-	
2400mm	230mm	4700	-	2380	-	

Heights and weights of Manhole Bases

Table 10

10						
Channel Size	Overall height	Effective Height	Approx Weight in kgs for		gs for	
	(Approx.)	(Invert to top of Base)	Base Types			
			Туре	Туре	Туре	Туре
			1	2	3	4
150mm	750mm	600mm	1960	-	-	1800
225mm	750mm	600mm	2120	-	-	1850
300mm	750mm	600mm	2120	2000	2050	-
375mm	750mm	600mm	2120	2000	2050	-

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

AVAILABLE MANHOLE BASE PLANS IN 1200MM Ø BASES

Manhole Base with 300mm ø channel (Type 1) showing correct position of Butyl Sealant

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

CONDRON CORBEL SLABS/ADJUSTING UNITS

Seating Ring	Manhole Diameter	Weight (Approx.)
Depth (mm)	(mm)	(kg)
85	600	100

- National Roads Authority (NRA) approved.
- Condron Cover Frame Corbel Slabs/ Adjusting Unit are manufactured using 85mm thick reinforced concrete to suit Condron Concrete manhole covers with 600mm access aperture.
- They are quick and simple to install.
- They can be used as risers in place of engineering bricks to achieve the required level for the manhole cover and frame.
- All Corbel Slabs/ Adjusting Units manufactured by Condron Concrete Works are tested in accordance with I.S. 420 and I.S. EN 1917:2004 Specifications.

CONDRON CONCRETE 1800mm Ø H.D.C. to I.S.EN 1917 and I.S. 420:2004

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

CATCH PITS

Available Configurations

Inlet / outlet size	225mm Ø	300mm Ø	375mm Ø
90° base	~	~	>
180° base	~	~	~
270° base	~	~	✓

- Inlet/outlet opes can vary to suit 225mm, 300mm and 375mm Condron Concrete S&S Pipes, Ogee Pipes or (proprietary) Twin Wall and P.V.C pipes.
- Base Configurations can incorporate a third inlet/outlet ope and are available left or right handed.
- Reinforced concrete base.
- Extendable depths and standard manhole covers available.
- Chamber Catch-pits can be supplied in 900mm or 1200mm Ø upon request.
- Quick installation.
- Catch-pit sections are manufactured and tested in accordance with I.S. 420 and I.S. EN 1917:2004.
- Steps available if required.
- National Roads Authority (NRA) approved.
- Catch Pits must be lifted using a specialist grab and never lifted using slings through pipe opes or step rings.

SECTION A-A

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

RECTANGULAR GULLIES TO BS 5911 – 6:2004

Cover Slabs are universally designed to receive most types of Gulley Grids.

CIRCULAR GULLIES TO BS 5911 – 6: 2004

Circular Gullies are available with 375mm Ø, 450mm Ø trapped or un-trapped. Gulley Cover Slabs available on request 610x610x115mm, 375mm ope.

CONDRON HEADWALL

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

CONDRON HEADWALL

Condron Headwalls are available in the following sizes:

Ĉ

Оре	Diameter	(OD)	Medium headwall	Large headwall opes:
mm			opes:	2151x2940x1600 high
			1185x1760x1055 high	
200			\checkmark	\checkmark
315			\checkmark	\checkmark
385			\checkmark	\checkmark
475			\checkmark	\checkmark
620			\checkmark	\checkmark
825				\checkmark
1010				\checkmark
1150				\checkmark

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

HANDLING / PIPE JOINTING

All pipes and fittings should be carefully inspected on delivery and before being used. No broken or defective pipe should be used (Ref to Pipe testing page 27). Cleanliness is essential to ensure a watertight joint. The spigot and the socket of all joints must be cleaned. The rubber gasket should be placed in the correct position (see pages 8 & 9). Under no circumstances should a lubricant be used with Lamell rings. A check must be made that the rubbers are evenly tensioned and not twisted. The vertical and horizontal alignment of the pipe must be correct before the joint is made. Piping should start at the downstream end, the pipes being normally laid with the sockets upstream. The spigot must be first entered into the socket of the preceding pipe; a suitable jointing harness should then be attached to the two pipes, which are drawn together until the pipe locks home. Prior to the pipe being fitted into its final position all gaskets should be checked to ensure twisting has not occurred. If the alignment of the pipe has been altered the pipes may need to be pushed together again.

HANDLING

Adherence to the basic principles of pipe handling will do much to ensure a sound and efficient pipeline. For the larger size pipes (1050mm Ø and over), the contractor must provide all off-loading equipment.

RECOMMENDATIONS FOR HANDLING CONCRETE PIPES

- 1. Avoid damage when handling, especially to the ends of concrete pipes, and **NEVER** drag or roll pipes over rough ground.
- 2. Use correct craneage for offloading utilising properly constructed 'C' hooks with spreader bar or canvass/fabric slings with central lift.
- **3.** Stack pipes on even ground on timbers to protect sockets and spigots, making sure the bottom row is securely chocked.
- 4. Never exceed recommended heights for stacking pipes on site, as shown in Table 8.
- 5. Joint rings **MUST** be stored away from sunlight, heat or possible contact with any oils.
- **6.** Under NO circumstances should pipes be lifted by passing ropes or chains through the bores.
- 7. Ensure compliance with the Health & Safety at Work Act 1989, subsequent amendments and the Health & Safety Product Data Sheet issued by Condron Concrete Works in compliance with of the above act.
- 8. See Product Data Sheet at back of brochure.

Table 12				
	PIPE STACKING LAYERS			
	Pipe Ø (DN)	Number Of Layers		
	150 – 225	6		
	300 – 375	4		
	450 – 600	3		
	600 – 900	2		
	1050 and above	1		

Note: Chamber Rings and manhole Rings should never be stored on their side ("on the roll") but should always be stored <u>Vertically</u>. This is particularly important with shallow depth sections, which are easily toppled even if stacked on firm, level ground.

Further Information

Condron Concrete Works, Arden Road, Tullamore, Co. Offaly Telephone: + 353 (0) 506 21220 / 41189 / 49000-9 Fax: + 353 (0) 506 41565 E-mail: <u>condronconcrete@eircom.net</u> Web: <u>www.condronconcrete.com</u> THIS DATA SHEET IS IN COMPLIANCE WITH THE HEALTH AND SAFETY AT WORK ACT 1989

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

SITE TESTING AND INSPECTION OF PIPELINE

All pipelines must be tested **before** and **after** backfilling. (Ref to table 13 page 28) **AIR TEST**

This test is not covered by, I.S. 6: 2004 and ISEN 1916, but a pipe which complies with the Standard will usually comply with the air test provided it is laid correctly and the test equipment is in good condition. Failure to pass the air test should not preclude the acceptance of the pipeline if a successful water test can be achieved.

Air testing, whilst being convenient for the contractor, is subject to many variants and special care must be taken to ensure that any indicated failure is not due to the test equipment as opposed to the pipeline. It is always more satisfactory to test a string of pipes correctly jointed rather than single pipes, because this will minimise the effect of any shortcomings in the equipment and will give an average for the line rather than an individual result, which may vary.

A typical specification states that air should be pumped into the pipeline by a suitable means until a stable pressure of 100mm head of water is indicated on the U-tube and if, after allowing a suitable period for the pressure to stabilise, the air pressure has not fallen below 75mm during a period of 5 minutes, without further pumping, the pipeline should be accepted.

Test Procedure and Acceptance Criteria

The following test procedure is consistent with that described in BS 8301 / the Water Authorities Association publication "Sewers for Adoption".

- (a) Seal the ends of the pipeline by means of expanding or inflatable drain stoppers. We recommend the use of Mill test or A.T.O. type inflatable stoppers, which are light and reliable.
- (b) Connect a 'U' gauge (manometer) to the test nipple of the drain stopper by means of rubber tubing.
- (c) Raise the internal pressure of the system until the 'U' gauge indicates slightly more than 100mm of water (50mm where gullies are connected). Purpose made drain testing equipment is so calibrated that the scale indicates the actual pressure in mm water gauge.
- (d) Allow about 5 minutes for stabilisation of the air temperature (a 1° change in temperature is reflected in a change in pressure of about 38mm on the gauge).
- (e) Adjust the pressure to 100mm (or 50mm if appropriate) by either introducing further air or by bleeding off any excess pressure.
- (f) Observe the fall in indicated pressure over a 5-minute test period. The residual pressure should not be less than 75mm (or 38mm for a 50mm test).

Comment

- (a) If a test fails, identify the cause. Leaks may readily be detected by applying a soap solution to **all** parts of the system while the air test is in progress.
- (b) Stoppers, which are not well seated, can allow air to escape. Reseating or retightening the stopper may be necessary. Mill Test or A.T.O. type inflatable stoppers are recommended for pipes > 375mm ø.
- (c) Temperature change can lead to an apparent failure of the air test (particularly if a cold wind is blowing across the pipes). If this is the case a longer stabilisation period may be necessary.
- (d) Check gaskets are positioned correctly (see pipe jointing).

Water Test

I.S. 6: 2004 and ISEN 1916 specifies that each batch of pipes is sampled and tested hydrostatically to 50KPa (5 metre head) for 15 minutes. Tests are also carried out at this pressure on joints whilst under shear load and during angular deflection. This provides a rapid indication of the impermeability of the pipes and joints and how they will perform when laid on site. It is normal for a site test to be of much longer duration and at a lower pressure. The following test is typically specified: The pipe shall be filled with water and provided with a
CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD. ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

SITE TESTING AND INSPECTION OF PIPELINE

standpipe so that the head is not less than 1.2m above the crown of the pipe at the highest point and no more than 6.0 metres at the lowest point. It may be necessary to test pipelines laid at a steep gradient in sections to remain within these limits.

It is normal to allow the filled pipeline to stand full of water for a period of not less than 2 hours to allow for absorption prior to commencement of the test.

If the loss of water over a 30 minute period, when topped up every 10 minutes, is less than 0.5 litres per metre diameter per linear metre of pipe run the test is considered acceptable.

Close Circuit Television (CCTV)

The use of CCTV is now quite widely used for the inspection of mature sewers to assess their serviceability, and also for newly laid sewers to identify any major defects at the end of the maintenance period prior to adoption by the appropriate authority.

Close circuit television (CCTV) is used by many authorities for pipeline inspections.

This is a visual check only and requires personnel who are not only experienced in the operation of the equipment but also in interpreting the results.

General

The air and water tests summarised above are consistent with those specified in the following publications: - B.S. 8301 and I.S. E.N.1610: 1998

able 13		
Pipe ¬	Pipe Length	Maximum No. of pipes to be laid
	(m)	prior to testing
150mm	1.25	3/4
225mm	1.25	3/4
300mm	2.0	3/4
375mm	2.5	3/4
450mm	2.5	3/4
525mm	2.5	3/4
600mm	2.5	3/4
675mm	2.5	3/4
750mm	2.5	3/4
900mm	2.5	3/4
1050mm	2.5	3/4
1200mm	2.5	3/4
1350mm	2.5	3/4
1500mm	2.5	3/4
1650mm	2.5	3/4
1800mm	2.5	3/4
2100mm	2.5	3/4
2400mm	25	2/3

Table 40

Table 13 Shows the maximum number of pipe lengths to be tested <u>before</u> and <u>after</u> backfilling under normal site conditions.

NOTE:

We strongly recommend that testing be carried out periodically during the pipe laying process for every three to four pipes as set out in B.S. 8010 Section 2.7 ie. British Standard Code of Practice for Precast Concrete Pipelines. Where backfilling is required as work progresses three to four pipes must be tested before and after backfilling. This practice is recommended to facilitate rectification of defects prior to backfilling. All concrete pipe work should be laid in accordance with the Manufacturer's Instructions and the Supervising Engineers Specifications.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

STRUCTURAL DESIGN

The forces acting on a cross section of pipeline arise from four main sources.

- 1. Weight of overlying fill.
- 2. Soil pressures transmitted to the pipe from surface loads i.e. traffic and other transient loads.
- 3. Supporting reaction below the pipe.
- 4. Water within the pipe (only significant for larger diameter pipes).

The four main conditions in which pipes are installed are:

- 1. In a 'narrow' trench.
- 2. In a 'wide' trench.
- 3. On the surface of ground over which an embankment is built.
- 4. In a narrow trench over which an embankment is built.

Design tables for condition 1 are supplied in the bedding Class / depth of cover tables. For conditions as stated in 2, 3 & 4 special design considerations apply and consultation may be required.

It is structurally critical if trench width on site exceeds the designed trench width. Trench width should be inspected and recorded regularly. A trench adjacent to a manhole may need to be wider but this should be taken into account at design stage.

TESTING

The Irish Standard Specification for Concrete Sewer Pipes, I.S.6: 2004 gives minimum crushing test loads for each diameter of pipe. Loads are applied in a three edge-bearing test described in the standard. Hydraulic tests are also carried out, by applying an internal hydraulic pressure of 0.5 bar to test for porosity. We also employ a 100% gauging system of our Spigots and Sockets to ensure watertight joints to 10m head of water.

(See Quality Control Page 5 and 6 and Testing and Inspection Page 27 and 28).

BEDDING FACTORS AND MATERIAL

In the three edge-bearing test, the vertical loading and supporting reactions are line loads. The strength of the pipes determined in the crushing test is multiplied by a bedding factor (Fm), which represents the amount by which the stresses in the pipe are reduced because of the spreading properties of the bedding for load and reaction.

The value of bedding factor (Fm) for a particular method of construction is not a precise figure but is affected by the quality of workmanship. The figures given are assuring a good standard of workmanship. Pipe settlement will be kept to a minimum by the proper selection and compaction of the bedding material. The bedding should be compacted to a density not less than that of the natural soil in the sides and bottom of the trench. The bedding material should be of a similar particle size to that in the trench sides. Where the ground is clay or silt, bedding material must consist of all-in gravels to prevent the trench from becoming a drainage channel and thus carrying away fines from the trench walls and bedding and causing settlement of the pipes. Rounded single size material is not recommended. The bedding directly beneath or above the pipeline must not be over compacted; otherwise line loading of the pipes will result.

Research and long experience has shown the following rule of thumb to be acceptable with a maximum of 40mm and limit on fine sands.

Table 14

↓ (mm) Pipe	Bedding Material Size
225 – 600	5 – 14mm
675 – 1500	15 – 20mm
1650 – 2400	25 – 40mm

COMPACTION

The degree of compaction shall be as specified in the structural design of the pipeline. Specified degrees of compaction shall be controlled by a method specification related to the particular equipment used (compaction means) or, where required, verified by testing.

The initial backfill directly above the pipe should be compacted by hand where required. Mechanical compaction of the main backfill directly above the pipe should not be commenced until there is a total depth of cover of least 300mm above the top of the pipe. The total depth of the cover directly above the pipe before mechanical compaction is commenced depends on the type of compaction device. The choice of compaction equipment, the number of passes and the thickness of layer to be compacted shall take account of the material to be compacted and the pipe to be installed.

Compaction by saturating the backfill or side fill is permissible only in exceptional cases and then only in suitable, noncohesive soils.

MINIMUM DEPTH OF COVER

It is advisable that pipes laid under roads should have cover over the pipe of not less than 1.2m. Pipes laid with less than 1.2m cover require special consideration.

For pipes laid in fields a minimum cover of 0.6m should be provided. At shallower depths there is a risk of damage from agricultural operations.

DESIGN CALCULATIONS

The required crushing strength of a concrete pipe can be calculated using the following equation. Wt > (We x Fs) / Fm

Where: Wt = required I.S.6 crushing load (kn/m), (Fn=Wt)

- We = Total applied load on the pipe (kn/m)
- Fs = Factor of safety (1.25 MINIMUM)

Fm = the bedding factor

Crushing load (Wt) as stated in I.S. 6: 2004 Table 5 NOTE:

The minimum crushing load (Wt) is the load which the pipe will sustain without collapse. The proof load (Wp) is the load which reinforced pipes sustain without developing a crack exceeding 0.3mm in width over a length of 300mm.. The Design Loads used in Tables 16, 17 and 18 are calculated from the Marston's Formula to collapse. (Fn=Wt)

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

STRUCTURAL DESIGN

Minimum Crush Test Loads I.S. 6: 2004 and ISEN 1916

Table 15	
Nominal Pipe ¬ (DN)	Minimum Crushing
	Load Fn kN/m (Fn=Wt)
225mm	27
300mm	36
375mm	45
450mm	54
525mm	63
600mm	72
675mm	81
750mm	90
900mm	108
1050mm	126
1200mm	144
1350mm	162
1500mm	180
1650mm	198
1800mm	216
2100mm	252
2400mm	288

Note 1, Note 2, Note 3, Sizes DN 225 to DN675 inclusive are manufactured unreinforced.

Sizes DN 750 and above are manufactured reinforced.

When using Condron Concrete I.S. 6: 2004 reinforced pipes the proof load is 80% of the minimum crushing load and the normal factor of safety of 1.25 is sufficient.

1200mm ø I.S. 6 Pipe undergoing Crush Test

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

STRUCTURAL DESIGN

DEPTH OF COVER TABLES

Depth of cover tables are provided for I.S. 6: 2004 Minimum Crush Strength and give a simple guide to maximum depth of cover for different bedding classes for single pipelines laid in a narrow trench. The density of fill is taken as 19.6kn/m³. This value is suitable for general design purposes and is unlikely to be exceeded in normal practice.

GENERAL

The general requirements of I.S. EN 1295 - 1: 1998 `Structural Design of Buried Pipelines' must be followed. Under no circumstances should blocks or bricks be placed beneath pipes and special care should be taken with material immediately surrounding the pipeline to minimise the possibility of large size lumps of rock, hardcore etc. coming into direct contact with the pipe and thus causing point loading. With a Socketed pipe care must be taken to ensure that adequate clearance is given beneath the Socket. Uniform support along the pipeline is essential. Where pipes are installed in soft ground the thickness of the lower bedding may need to be increased to prevent excessive settlement of the pipeline. In assessing the loading category, regard should be paid to the possible future upgrading of a road. Pipes under verges should normally be treated as though under the road, and should take account of any planned road improvements.

The water table must be kept below all trenches while pipe laying is in progress. Trench width should be kept as narrow as possible and within its designed dimensions. See recommended trench width, on Bedding Class depth of Cover tables. Acceptance tests (water or air) must be applied prior to commencement of backfilling and should comply with BS8301: 1985 or ISEN 1610. Adequate trench support should be used where necessary to ensure stability and safety.

FACTOR OF SAFETY

To allow for unexpected site conditions a minimum factor of safety of 1.25 should be allowed on the calculated external loads.

TRENCH WIDTHS

Narrow trench conditions – the assumed widths are given in the depth of cover charts. The effective trench width (B_d)

Strength Classes Required For Depth of Cover

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

STRUCTURAL DESIGN / BEDDING CLASSES

	2											6]_							-			_,						-
			1		C	<u>_</u>			1							K	SL		6			5		U					
		DR DF	ON N	сс R(RE	TE T	wc UI		(S /	S A	TR RF	AD	EN/	AME	E FO	DR FA		NDI IF	ROI RF			CR	RET	ΈL	TD.			
						,		s B	5.4	TF	S		., . U	A S		DF	S	GI	, N	•									
Table 17:	FC	DR	IS	E	N 1	91	16	N N	Ð		SCI 35	6 ^E .	20	<u>8</u> 94	, ^E		AS	S	12	0	PI	PE	S						
																							ion.						
				~														_				1	mpact						
			-	~																			nd co						
			ŀ	~																			erial a						
			ŀ																				Imate						
				9																			backfil		mum				
			-	ß																			uate t		5 mini				
			-															_					adaq		of 1.2				
			ŀ	4																			, with		afety ,				
			-																				dures		or of s				
			er (n	e																			proce		l facto				
	S		Cov Cov	2														_					aying	004.	with a	.2m.			
	OAD		tho																				pipe l	S. 6:2	(=M)	s is 1			
	TR		Dep	-																			roper	5 of I.;	Load	r road			
	LIGH	oad	luded	M/M						2.1	2.6	3.3	4.7	3.4	3.3	0.3	3.0	5.7	8.7	5.5	3.3		h and p	Table ו	i Crush	es unde	ient.		
		ľ	Inc	¥									7		~	1	1	-	1	3	3		th widt	∋d from	nimurr	ipeline	docum		
		nded	idth																				d trenc	obtain€	the Mi	Jer for p	n this (de only	•	
		mme	ch V	E	0.70	0.75	1.05	1.15	1.20	1.35	1.45	1.50	1.90	2.05	2.30	2.45	2.60	2.80	2.95	3.25	3.55		nende	been	using	of co	tions i a quic)	
		Reco	Tren																				ecomr	s have	ulated	depth	alcula sed as		
		-	ŝt	Ê.										_			•						nens r	loads	า calcı	imum	sign C be us		
			Socke	D. (m	392	505	606	707	808	606	1005	976	1148	1420	1605	1805	2012	2155	2310	2525	2866		e assun	srushing	Ive beer	ded min	the De is is to		
		al	er															_	_			7	e Table	pipe (ngs hé	nmen	efer to ∋ table		
		omin	amet	(mm)	225	300	375	450	525	600	675	750	900	1050	1200	1350	1500	1650	1800	2100	2400	ble 1) abov	imum) loadi) recol)TE: R abov		
		Z	Ö																	-		Ta	The	Mir	The	The	NO The		

I Recommended Load r Socket Trench Width Included Depth of Cover 0.D. (mm) (m) kN/m 1 2 1 392 0.70 - 7 7 7 505 0.70 - 7 7 7 606 1.05 - 7 7 7 707 1.15 - 7 7 7 808 1.20 - - 7 7 7 909 1.35 2.1 - 7 7 7 7 976 3.3 2.6 2.6 7 7 7 7	(m) 3 4 5 6 7 8 7 8 7 8
r Socket Trench Width Included Depth of Cover 0.D. (mm) (m) kN/m 1 2 392 0.70 - 7 7 7 505 0.75 - 7 7 7 606 1.05 - 7 7 7 707 1.15 - 7 7 7 808 1.20 - 7 7 7 909 1.35 2.1 7 7 7 976 1.45 2.6 3.3 7 7	(m) 3 4 5 6 7 8 1 1 5 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O.D. (mm) (m) kN/m 1 2 392 0.70 - - 1 2 505 0.75 - - 1 2 606 1.05 - - 1 1 2 707 1.15 - - 1 1 1 808 1.20 - - 1 1 1 909 1.35 2.1 1 1 1 1 976 1.45 2.6 1 1 1 1	3 4 7 4 5 4 5
392 0.70 - <th>Image: selection of the selection</th>	Image: selection of the selection
505 0.75 - • <td>ImageI</td>	ImageI
606 1.05 - - 0 0 707 1.15 - - 0 0 0 808 1.20 - - 0 0 0 0 909 1.35 2.1 0 0 0 0 0 0 976 1.45 2.6 2.6 0 <td>Norme</td>	Norme
707 1.15 - - 0 808 1.20 - - 0 909 1.35 2.1 0 0 1008 1.45 2.6 0 0	NormeNormeNormeImageIma
808 1.20 - - - 909 1.35 2.1 - - 1008 1.45 2.6 - - 976 1.50 3.3 - -	Normal Sector Normal S
909 1.35 2.1 7 1008 1.45 2.6 7 976 1.50 3.3	Image: Second
1008 1.45 2.6 7 7 976 1.50 3.3 1.50	Image: Section of the sectio
976 1.50 3.3	
1148 1.90 4.7	
1420 2.05 6.4	
1605 2.30 8.3	
1805 2.45 10.3	
2012 2.60 13.0	
2155 2.80 15.7	
2310 2.95 18.7	
2525 3.25 25.5	
2866 3.55 33.3	

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

STRUCTURAL DESIGN

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

Table

The loadings have been calculated using the Minimum Crush Load (W=) with a factor of safety of 1.25 minimum.

The recommended minimum depth of cover for pipelines under roads is 1.2m.

NOTE: Refer to the Design Calculations in this document.

The above table is is to be used as a guide only.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

HYDRAULIC DESIGN

Pipelines should be designed to accommodate expected discharge, while also ensuring self-cleansing is achieved. A velocity between 0.75m / sec and 4.0m / sec, is considered satisfactory for self-cleaning when flowing half full.

COLEBROOK – WHITE EQUATION

A number of formulas have been developed to assist in hydraulic calculations to determine flow rates in pipelines. The Colebrook – White equation is considered most accurate for commercial pipes as effective roughness is applied. The equation expressed in Engineering terms is as follow:

$$V = -2 \sqrt{2g \text{ Di } \log \frac{\kappa s}{3.7D}} + \frac{2.51v}{2 \text{ g Di}}$$

Where

V = Velocity

G = Gravitational acceleration (9.81 m/s)

i = Hydraulic gradient (m/m) D = Pipe internal diameter (m)

ks = Hydraulic

v = Kinematic viscosity of fluid (1.31 x $10\sqrt{m^2/s}$)

Now Q can be calculated using $Q = VR (m^3/s)$

Where

Q = Discharge (m³/s) V = Velocity (m/s) R = Hydraulic Radius = D(m) 4D = Internal Diameter of pipe

DESIGN CHARTS

BS 8005:Part 1 1987, contains hydraulic flow charts based on the Colebrook – White equation for calculating transitional flow.

Two such charts have been included to simplify calculations. Each has a different roughness factor (ks) and should be used as follows:-

Foul and combined sewers	ks = 1.5mm
Surface water sewers	ks = 0.6mm

The velocities and discharges given in the hydraulic flow charts are for circular concrete pipes flowing full. If the pipes are partially full the proportional discharge and velocity values, can be taken off the partial flow chart provided.

Example

Design of Surface Water Sewer

Pipeline length	=300m
Difference in level between inlet and outlet	=2m
Design discharge	=500L/S

To determine:

- a) Adequate pipe size when flowing full
- b) Discharge and Velocity when flowing 70% full
- c) Determine if the velocity is satisfactory for selfcleansing

Solution

Hydraulic Gradient	1 in 150 (or
0.0066)	
Ks for surface water sewer	0.6mm

a) Flowing Full

Refer to hydraulic flow chart ks = 0.6mmThe intersection of the horizontal discharge line of 500 L/S ($0.5m^3$ /sec) with the vertical hydraulic gradient line of 1 in 150 gives:

Pipe Diameter	600mm
Average Velocity	1.95 m/sec
Discharge	550 L/S

b) Discharge and Velocity when flowing 70% full

Refer to the graph showing Relative Velocity and flow in circular pipes for any depth of flow. The intersection of the horizontal proportional depth line of 0.7 with the proportional discharge and velocity curves gives:

Proportional Discharge	0.84
Proportional Velocity	1.12

Therefore:

Actual Discharge	0.84 x 550 = 462 L/sec
Actual Velocity	1.12 x 1.95 = 2.18 m/sec

c) Check if self-cleansing is achieved when flowing half full

Refer again to Relative Velocity and flow chart. When the discharge is 0.5 the proportional velocity is 1.0,

=> $1.0 \times 1.95 = 1.95$ m/sec, 0.75 < 1.95 < 4.0 therefore satisfactory

HYDRAULIC DESIGN

Relative Velocity and Flow in Circular Pipe for any Depth of Flow

NOTE: This graph complies with B.S. 8005: part 1 1987 and will comply to any new Irish, British or European Standards in the future.

HYDRAULIC DESIGN

Colebrook – White) Water at 15°C Flow Chart No.1

HYDRAULIC GRADIENT 1 in.

HYDRAULIC DESIGN

(Colebrook – White) Water at 15°C Flow Chart No.2

HYDHAULIC GRADIENT 1 in.

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD.

ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

PRODUCT DATA SHEET

CONCRETE PIPES, MANHOLE COMPONENTS AND ANCILLARY PRECAST PRODUCTS MANUFACTURED BY CONDRON CONCRETE WORKS

Composition

The products are composed of cementitious materials and aggregates and possibly admixtures. Certain products may be reinforced with steel.

Hazards

The finished products as supplied are of an inert nature and inherently non-hazardous to health. The individual items are generally heavy and many are so shaped that they can roll easily. Correct handling and stacking procedures as given below must be employed.

Handling/Use Precautions

The weight and surface nature of the products requires the use of protective gloves and footwear to avoid injuries.

- The manual handling of such loads may cause an injury should be avoided. Good slinging and lifting practices should always be used and the following points observed:
- Products must not be rolled off vehicles or around sites.
- Chamber Rings and manhole Rings should never be stored on their side ("on the roll") but should always be stored vertically. This is particularly important with shallow depth sections, which are easily toppled even if stacked on firm, level ground.
- Chamber rings, Bases and Catch Pits must not be lifted by slinging through the step/rung irons and pipe junctions must not be lifted by slinging around the branch.
- Use correct craneage for offloading vehicles. Properly constructed 'C' hooks with spreader bar or canvas/fabric slings with a central lift are recommended.
- Where lifting points are provided, all the lifting points must be used.
- Where lifting points are not provided, then suitable slings (canvas/fabric) should be used around the product and never through it. Correct craneage must always be utilised.
- Care should be taken when breaking down product stacks either on the delivery vehicle or on site.
- Pipe jointing tackle is only to be used for the purpose for which it is supplied.
- When cutting or surface treating products by hand or machine, dust and flying fragments may be created. The dust created may be of respireable size and may contain quartz. Extended periods of exposure to high concentrations of such dust, particularly in enclosed spaces, can constitute a health hazard. In such circumstances, respiratory protective equipment should be worn. Suitable eye protection should be worn to protect against dust and/or flying fragments.
- Provide Trench Supports where necessary.
- Ensure compliance which the Health Safety and Welfare at Work Act 2005. See Safety Page 47

Ogee Pipe Loading per 12 Metre Vehicle

Table 23	
Pipe ¬	Approx. Number of Ogee pipes
	per 12 Metre Vehicle
150mm	450
225mm	330
300mm	220
375mm	160
450mm	120
600mm	86
750mm	40
900mm	35
1050mm	18
1200mm	16

Та	ble 24	•
	Pipe ¬	Approx. Number of S & S pipes
		per 12 Metre Vehicle
	150mm	400
	225mm	200
	300mm	60
	375mm	45
	450mm	30
	525mm	24
	600mm	18
	675mm	16
	750mm	12
	900mm	10
	1050mm	8
	1200mm	7
	1350mm	5
	1500mm	4
	1650mm	4
	1800mm	3
	2100mm	3
	2400mm	3

S & S Pipe Loading per 12 Metre Vehicle

SAFETY

CONDRON CONCRETE WORKS IS A TRADENAME FOR CONDRON CONCRETE LTD. ARDEN ROAD, TULLAMORE, CO. OFFALY, IRELAND.

Attention is drawn to Regulations 76 and 77 of the Safety, Health and Welfare at Work (Construction) Regulations 1995. These notes are a brief summary of safety precautions based on the 1995 Regulations made under the Safety, Health and Welfare at Work Act 1989. It is the responsibility of employers, employees, and the selfemployed, to ensure that legal requirements are complied with. Particular attention is drawn to the Safety, Health and Welfare at Work (Construction) Regulations 1995 and other legislation setting out the duties of owners, employers and employees in relation to the construction and maintenance of buildings.

Above notes are given for general information guidance only, and are not to be taken as comprehensive. All Condron Concrete Works Drivers have Hard Hats, Steel - Toe Boots, Safety Jackets and current FAS Safety Passes.

Identification Of Product - Concrete Pipes

Application:

Use of concrete pipes should be in accordance with the relevant National and European Union Codes of Practice. *Composition of Ingredients:*

Concrete pipes are a mixture of natural aggregates, cement, water and steel. Admixtures may be added to modify the properties of the finished product.

Hazard Identification:

Concrete pipes are abrasive and can weigh 50kg to over 8 tonnes depending on the dimensions and should be handled accordingly

Concrete pipes should be stored correctly to prevent rolling and overturning.

Cutting, drilling or hammering of concrete pipes can create dust. If inhaled in excessive quantities over extended periods, respirable dust can constitute a long term hazard

Cutting, drilling or hammering of concrete pipes, unless adequately controlled, can project particles at high velocity with consequent risk of impact damage and/or injury particularly to the exposed areas of the body and eyes.

When cutting, use equipment suitable for concrete and steel in accordance with manufacturer's instructions.

First Aid Measures and First Aid Treatment as follows:

Eye Contact: Immediately rinse under running water and seek medical advice

Cuts and Abrasions: Cuts / Abrasions from concrete pipes should be cleaned and treated using the normal first aid method. Wounds must receive prompt medical attention. In all cases of doubt or where symptoms persist, medical advice must be obtained.

Accidental Release Measures: Avoid contact with skin. Tidy up debris from broken pipes. Handling and Storage: Protect skin when handling concrete pipes. Use suitable handling and transport equipment when using concrete pipes. Before lifting always size up the load. Always follow safe lifting and manual handling procedures. Ensure adequate load bearing capacity of the ground when placing or storing concrete pipes. Recommended stacking heights depending on diameter. Pipes in storage should be chocked. Do not roll / drag pipes. Webbed fabric slings or `C' hooks should be used. Trench preparation and pipe support should be in accordance with Health and Safety regulations. Store / Stack well back from edge of any excavation. Exposure Controls / Personal Protection: Hand Protection: Wear suitable protective gloves. Skin Protection: Avoid contact with skin. Eye Protection: Wear goggles to prevent eye contact from flying particles when cutting, drilling or hammering concrete pipes. Masks: Wear appropriate respiratory protection when cutting, drilling or hammering concrete pipes. Footwear: Wear footwear with protective toecaps when working with concrete pipes. Physical and Chemical Properties: Concrete pipes are grey in colour. The product is abrasive. Stability and Reactivity: Ensure the integrity and stability of pipes whilst stored on site. Toxicological Information: Not applicable. Ecological Information: Concrete pipes have no ecological effects. Disposal Considerations: Concrete pipes may be recycled or placed in approved landfill sites. Transport Information:

Ensure security and safety of load at all times

Note:

The information given in this manual is, to the best of our knowledge, correct, but customers, including consultant engineers, site engineers, architects and specifiers, must satisfy themselves that any particular product is suitable for their specific requirements. Condron Concrete Works, or their employees, or agents, do not accept any liability whatsoever arising from anything contained in this manual.

CONCRETE ROOF TILES

Concrete Pantiles, Concrete Slate Tiles, Concrete Bullnose Slate Tiles, 3 in 1 Tile /Cladding Tiles, Concrete Plain Tiles /Cladding Tiles, M Profile and Condron Slate. and Accessories including Ridge Tiles, Ornamental Ridge Tiles, Cloak Tiles, Baby Ridge Tiles are available from:

Condron Concrete Works Arden Road, Tullamore, Co. Offaly. Telephone: +353 (057) 9349000-9 Fax: +353 (057) 9341565 Email: condronconcrete@eircom.net or Web: www.condronconcrete.com

Appendix E

Irish Water Foul Water Diversion Confirmation of Feasibility

Note, drawings included within the confirmation of feasibility are superseded by the planning drawings as the red line boundary changed to incorporate the surface water discharge point to the south of the site.

Stephen Ginn Arup One Albert Quay, Cork T12 X8N6

8 February 2022

Dear Mr Ginn,

Re: DIV21300 - Kinsale Road, Cork - Diversion enquiry.

Irish Water has reviewed your enquiry in relation to the diversion of an existing 600mm sewer to facilitate a proposed development at Kinsale Road, Cork as indicated on drawings 252666-ARUP-22-XX-DR-C-2000 Proposed Foul Water Layout and 252666-ARUP-22-XX-DR-C-2001 Proposed Combined Sewer Long Sections

Based upon the details you have provided with your enquiry and as assessed by Irish Water, we wish to advise you that, the proposed sewer diversion is feasible, subject to the conditions set out below being in place.

- 1. The construction shall be constructed in strict accordance to drawings 252666-ARUP-22-XX-DR-C-2001 Proposed Combined Sewer Long Sections
- 2. A 750mm spur shall be left out of proposed manhole MH3 to allow for any future works on this sewer.
- 3. You are advised that this correspondence does not constitute an agreement in whole or in part to provide a diversion of Irish Water infrastructure and is provided subject to diversion agreement being executed at a later date. You are advised to make contact with the diversions team at diversions@water.ie once planning permission has been granted and prior to any works commencing on site in order to enter into a diversion agreement with Irish Water.

If you have any further questions, please contact Maurice Feehan from the diversions team on 087 9027174 or email maufeehan@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

Gronne Maesis

Yvonne Harris Head of Customer Operations

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Do not scale

m MH4	Com MH5	Com MHA	Com MH7	
F1,003	F1,004	F1,005		F1,006
750 381,0	750 381,0			750 381,0
		00		
			11-7	
		48 4 4 7	400	
20 005	$ \leq 1 \leq 2 $			72 521

	Com MH3 Com MH4	Com MH5	Com MH6 C	om MH7	<u>Com MH8</u>	 All foul water drainage to be designed an constructed in accordance with Irish Water of Practice and Standard Details. All pipework shall be Polypipe Polyse fittings, or similar approved. All pipes to have a minimum cover of in non-trafficable areas and 1.2m in trareas. Refer to drawing 252666-ARUP-ZZ-XX-DR-C-2000 for Proposed Foul Water Layout. Refer to drawing
						252666-ARUP-ZZ-XX-DR-C-6000 an for drainage details.
						P04 18/01/22 RM RM
						P0320/12/21WCRMIssued for InformationP0218/11/21RMRMIssued for Information
	E1002 E1003	F1004	F1005	F1006		P0104/11/21RODRMIssued for InformationRevDateByChkd
	750 750 381.0 81.0 750 381.0 750 750 750 750 750 750 750 75	750 381.0	750 381,0	<u>750</u> 381.0		ARUP One Albert Quay Cork, Ireland
						Tel +353 (0)21 427 7670 Fax +353 (0)21 427 2345 www.arup.com Client
		2 /				CREAMRELDS
7.365	7,365		7,084		0 Ú	Project Title Creamfields Residential
7.365	21.714 21.714	NN NN NN 5 54.653	780 1 1 1 1 1 1 1 1 1 1 1 1 1	72.524		Project Title Creamfields Residential Development

Appendix F

CCTV Drainage Survey Results

CCTV Inspection Report

KINSALE ROAD CORK

29/11/2021 Approved By: B.Gallahue Job Number: Q309604-REV 1

Crowley Services (Cork) Ltd T/A Dyno-Rod, Unit P1, Marina Commercial Park, Centre Park Road, Cork Tel: 021 4322 444 | Fax: 021 4322 433 info@crwly.com www.dynorod.ie Company Registration Number 52987

DYNO-ROL Drain Cleaning, Inspection & Rep	Project Ir	nformation	Dyno Rod Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Ireland
Job Number Q309604-REV 1	Surveyed by (Operator) J O BRIEN	Base Unit 45HB4JCDDY	Date 29/11/2021
Client Details:			
ARUP			
Site Details:			
KINSALE ROAD CORK			
Contractor Details:			
Dyno Rod Cork Unit P1, Marina Commerci Centre Park Road Cork City County Cork EIRE Ireland	ial Park	Office Contact Name: B.Gallah Office Contact Number: 00353	ue 21500 4100
Purpose of Survey:			

Contents Page

Job Number Q309604-REV 1 Base Unit 45HB4JCDDY

Report Contents

- Page 1 Cover Page
- Page 2 Job Overview
- Page 3 Contents Page
- Page 4 Site Drawings
- Page 9 Site Photos
- Page 11 Survey Run Sheet(Survey 1 MH.S1 to MH,S2)
- Page 14 Survey Run Sheet(Survey 2 MH.S1 to RIVER)
- Page 17 Survey Run Sheet(Survey 3 MH,F2 to MHF,1)
- Page 20 Survey Run Sheet(Survey 4 MH,F2 to MHF,3)
- Page 23 Survey Run Sheet(Survey 5 MHF,4 to MHF,3)
- Page 26 Survey Run Sheet(Survey 6 MHF,4 to MHF,5)
- Page 29 Survey Run Sheet(Survey 7 MHF.4 to MHF.5)
- Page 31 Survey Run Sheet(Survey 8 MHF.4 to MHF.5)
- Page 34 Survey Run Sheet(Survey 9 MHF.4 to MHF.5)
- Page 36 Job Summary

DYNO-ROL Drain Cleaning, Inspection & Rep	Site Drawin	ngs/Photos	Dyno Hod Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Ireland
Job Number	Surveyed by (Operator)	Base Unit	Date
Q309604-REV 1	J O BRIEN	45HB4JCDDY	29/11/2021

DYNO-ROL Drain Cleaning, Inspection & Rep	Site Drawin	Site Drawings/Photos		
Job Number	Surveyed by (Operator)	Base Unit	Date	
Q309604-REV 1	J O BRIEN	45HB4JCDDY	29/11/2021	

DYNO-ROL Drain Cleaning, Inspection & Rep	Site Drawin	ngs/Photos	Dyno Hood Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Irreland	
Job Number	Surveyed by (Operator)	Base Unit	Date	
Q309604-REV 1	J O BRIEN	45HB4JCDDY	29/11/2021	

29-11-2021 16:41:51	F4 3.90m Doop - F4 - F5- 2-3 mor 5	As Connet alon Sields - Alme many while T	A 114m Deep - Pics Theory mus cont	Fi Cannot other Sieres mus firs thread		Drainage Records	Unnamed Road, Ballintemple, Cork, Ireland
	The SILT CANON OF THANGE LETY -	Aliman mus this taxan' cervic	1	Carr L		Legend LOCAL STORM Manhole COCAL COMBINED Manhole Manhole Manhole	
51.899198, -8.44966	7				200		

DYNO-ROL Drain Cleaning, Inspection & Rep	Site Drawin	ngs/Photos	Dyno Hood Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Irreland	
Job Number	Surveyed by (Operator)	Base Unit	Date	
Q309604-REV 1	J O BRIEN	45HB4JCDDY	29/11/2021	

DYNO-R Drain Cleaning, Inspect	lon & Repair	CTV Inspection Repo	ort	Dyno Rod Co Unit P1, Marina Commercial Pa Centre Park Ro Cork C County Co Eli Irela	
Surveyed by (Operator) J O BRIEN	Job Number Q309604-REV 1	Pipe Length Reference(PLR) MH,S2 X	Date 29/11/2021	Pre Cleaned Flushed through to enable	
Weather 1 - Dry	Customer Present	Service Grade/Structural Grade 0/0	Base Unit 45HB4JCDDY	Section Number	
load KINSALE ROAD Vlace CORK .ocation		Division District Location Details			
'urpose Juty STORM Catchment	Shape Materii Catego	/Size 225mm al PVC ory	Start Node MH.S End Node MH,S2 Total length 10.7	1 metres	
icale 1:0.52 Direction Upstream					
art Node Ref:MH.S1 I/L :mn Position Code	n Depth: 1400mm Description			Photo Type/Grade	
0.00 ST 0.00 MH 0.00 WL	Start of Survey Length Start node type, manho Water level 0% height/o	ble, reference MH.S1 diameter		5874781 Comment / 0 5874782 Comment / 0 5874783 Comment / 0	
10.70 REM 10.70 FH 10.70 FH	LINE LOOKS TO BE B Finish survey length Finish survey length	LOCKED OFF		5874784 Comment / 0 5874785 Comment / 0 5874786 Comment / 0	

Finish survey length

Surveyed by (Operator) Job Num J O BRIEN Q309604-F		Pipe Length Re MH.S	eference(PLR)	Date 29/11/2021	Flushed	Pre Cleaned through to enable
Weather 1 - Dry	Customer Present	Service Grade/S	tructural Grade 0	Base Unit 45HB4JCDDY	Section Number 2	
ad KINSALE ROAD ace CORK cation			Division District Location Details			
rpose ty STORM tchment	Sh Ma Ca	nape/Size 225mm aterial PVC ategory		Start Node MH.S End Node RIVER Total length 8.27	metres	
ale 1:0.42 rection Downstream						
rt Node Ref:MH.S1 I/L :mm Position Code	Description				Photo	Type/Grade
0.00 ST 0.00 MH 0.00 WL 0.27 FH	Start of Survey Len Start node type, ma Water level 0% heig Finish survey length	gth Inhole, reference MH.S ght/diameter 1	1		5874787 5874788 5874789 5874791	Comment / 0 Comment / 0 Comment / 0 Comment / 0

End Node Ref:RIVER | I/L :mm

DYNO Drain Cleaning,	-RC	DD & Repair	CC	TV Inspe	ction Repo	ort	Unit P1, N	Dyno Hod C Iarina Commercial P Centre Park Ro Cork (County C El Irela
Surveyed by (Opera J O BRIEN	itor)	Job Numbe Q309604-REV	r V 1	Pipe Length Re	ference(PLR) 1 X	Date 29/11/2021	Flushed	Pre Cleaned through to enable survey
Weather 1 - Dry		Customer Pres	sent	Service Grade/S	tructural Grade	Base Unit 45HB4JCDDY	Se	ction Number 3
Road KINSALE ROAD Place CORK Location					Division District Location Details			
Purpose Duty Foul Catchment			Shape/Si Material Category	ze 600mm CON		Start Node MH,F2 End Node MHF,1 Total length 26.5	2 2 metres	
Scale 1:1.36 Direction Upstream								
tart Node Ref:MH,F2 Position C	I/L :mm [ode	Depth: 1400mm Description					Photo	Type/Grade
	ST MH WL	Start of Survey I Start node type, Water level 10%	Length manhole, height/di	, reference MH,F iameter	2		5874792 5874793 5874794	Comment / 0 Comment / 0 Comment / 0
26.52	REM FH	MHF,1 Finish survev lei	ngth				5874795 5874796	Comment / 0 Comment / 0

End Node Ref:MHF,1 | I/L :mm

MHF,1 Location

CCTV Inspection Report

							Ireland
Surveyed by (Op	perator) N	Job Number Q309604-BEV 1	Pipe Length Re	eference(PLR)	Date 29/11/2021	F	Pre Cleaned
Weather		Customer Present	Service Grade/S	tructural Grade	Base Unit	Se	ction Number
				Division	43084JCDD1	<u></u>	4
Place CORK Location				District Location Details			
Purpose Duty Foul Catchment		Shape/Si Material Category	ize 600mm CON		Start Node MH,F2 End Node MHF,3 Total length 24.78 m	etres	
Scale 1:1.26 Direction Downstrea	am				·		
Start Node Ref:MH,	F2 I/L :mm	Depth: 1400mm					
Position	Code	Description				Photo	Type/Grade
	ST MH WL	Start of Survey Length Start node type, manhole Water level 5% height/dia	, reference MH,F	2		5874800 5874801 5874802	Comment / 0 Comment / 0 Comment / 0
	VVL	Watch level o /a neigh/aid				3074002	
4.26	CN	Connection at 9 o'clock, c	diameter 150mm			5874803	Comment / 0
24.78	REM	MHF,3 Finish survey length				5874804	Comment / 0
End Node Ref:MHF	.3 I/L :mm	i mon ourvey length				5074003	

CCTV Inspection Report

	5 mopeetio	- o riepun					Irelan
Surveyed by (Ope J O BRIEN	erator)	Job Number Q309604-REV 1	Pipe Length R	eference(PLR)	Date 29/11/2021	P N	Pre Cleaned
Weather		Customer Present	Service Grade/	Structural Grade	Base Unit	Se	ction Number
Road KINSALE ROAI Place CORK Location	D		0	Division District Location Details	45HB4JCDDY	<u> </u>	5
Purpose Duty Foul Catchment		Sha Mat Cat	ape/Size 600mm terial CON egory	<u>.</u>	Start Node MHF,4 End Node MHF,3 Total length 84.08 m	etres	
Scale 1:4.41							
Start Node Ref:MHF.4	4 I/L :mm	Depth: 3900mm					
Position	Code	Description				Photo	Type/Grade
	ST MH WL	Start of Survey Leng Start node type, mar Water level 10% heig	th hole, reference MHF ght/diameter	.,4		5874806 5874807 5874808	Comment / 0 Comment / 0 Comment / 0
84.08 84.08 End Node Ref:MHF,3	REM FH I I/L :mm	MHF.3 Finish survey length				5874809 5874810	Comment / 0 Comment / 0

CCTV Inspection Report

Surveyed by (Ope	rator)	Job Number		Pipe Length R	eference(PLR)	Date	F	Pre Cleaned
J O BRIEN Weather		Q309604-REV Customer Pres	ent	MHF Service Grade/S	,4 X Structural Grade	29/11/2021 Base Unit	Se	lot Cleaned
1 - Dry				4/	Division	45HB4JCDDY		6
Place CORK Location	5				District Location Details			
Purpose Duty Foul Catchment			Shape/Siz Material C Category	e 600mm CON		Start Node MHF,4 End Node MHF,5 Total length 2.22 r	netres	
Scale 1:0.10 Direction Downstrean	n							
Start Node Ref:MHF,4	1 I/L :mm	Depth: 3900mm						
Position	Code	Description					Photo	Type/Grade
0.00	ST MH WL	Start of Survey L Start node type, Water level 20%	ength manhole, height/dia	reference MHF ameter	.4		5874811 5874812 5874813	Comment / 0 Comment / 0 Comment / 0
2.22 2.22 2.22 End Node Ref:MHF,5	REM DES FH I/L :mm	CAN NOT DRIV Debris Silt 50% (Finish survey ler	E IN SILT cross sect ligth	ional area loss			5874814 5874815 5874816	Comment / 0 Service / 4 Comment / 0

	rain Cleanin	D-R ng, Inspect	tion & Repair	CC	TV Inspe	ction Rep	oort		Unit P1, M	Dyno Rod Cork Iarina Commercial Park Centre Park Road Cork City County Cork EIRE Ireland
Surve	eyed by (Op J O BRIEN	erator)	Job Number Q309604-REV	r V 1	Pipe Length R MHF	eference(PLR) F.4 X		Date 16/12/2021	P Flushed	re Cleaned through to enable
	Weather 4 - Shower	s	Customer Pres	sent	Service Grade/S	Structural Grade	4	Base Unit 5HB4JCDDY	See	ction Number 7
Road KIN Place CC Location	ISALE ROA DRK	١D				Division District Location Details				
Purpose Duty Fou Catchme	I nt			Shape/Siz Material Category	ze 600mm Concrete			Start Node MHF.4 End Node MHF.5 Total length 0 me	etres	
Scale 1:0 Direction	0.00 Downstrea	m								
Start Nod	e Ref:MHF Position	.4 I/L : m Code	netres Description						Photo	Type/Grade
	0.00 0.00	ST MH WL	Start of Survey I Start node type, Water level 40%	_ength manhole, height/dia	reference MHF ameter	.4			5874817 5874818 5874819	Comment / 0 Comment / 0

r

0.32 °

0,00 m

Water level 40% height/diameter

30

Ľ	Drain Cleanin	D-R	ROD ion & Repair	CC	TV Inspe	ection Rep	oort		Unit P1, N	Dyno Rod Cor Aarina Commercial Par Centre Park Roa Cork Cit County Cor EIR Irelan
S	Surveyed by (Op J O BRIEN	erator)	Job Numbe Q309604-REV	r V 1	Pipe Length R MH	Reference(PLR) F.4 X	-	Date 16/12/2021	Flushed	Pre Cleaned through to enable survey
	Weather 4 - Shower	s	Customer Pres	sent	Service Grade/	Structural Grade	45	Base Unit HB4JCDDY	Se	ection Number 8
Road Place Loca	KINSALE ROA CORK tion	AD				Division District Location Details				
Purp Duty Catcl	ose Foul hment			Shape/Siz Material Category	ze 600mm Concrete			Start Node MHF.4 End Node MHF.5 Total length 1.2 met	res	
Scale Direc	e 1:0.05 tion Downstrea	ım								
Start	Node Ref:MHF Position	.4 I/L : m Code	etres Description						Photo	Type/Grade
	0.00	ST MH WL	Start of Survey I Start node type, Water level 40%	Length manhole, height/di	reference MHF ameter	÷.4			5874820 5874821 5874822	Comment / 0 Comment / 0 Comment / 0
	0.32	CL	Crack longitudin	nal at 12 o'	'clock				5874823	Structural / 2
	0.50	GO SA	General observa concrete block Survey abandor	ation at thi ned - Rem	s point - Remar ark: Camera un	k: Obstruction in able to travel	pipe 3 me	eters D/S Possible	5874824 5874825	Comment / 0 Comment / 0
End N	lode Ref:MHF.	5 l/L : me	otres							

CCTV Inspection Photos

Dyno Rod Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Ireland

			lieidilu
Job Number Q309604-REV 1	Surveyed by (Operator) J O BRIEN	Base Unit 45HB4JCDDY	Date 16/12/2021
From: MHF.4 / To: MH Size: 600mm	IF.5		

	D-R ng, Inspecti	Ion & Repair	CC	TV Inspe	ection Rep	port		Unit P1, N	Dyno Rod Cork Iarina Commercial Park Centre Park Roac Cork City County Cork EIRE Irelanc
Surveyed by (Op J O BRIEN	perator) N	Job Number Q309604-REV	r V 1	Pipe Length R	eference(PLR) F.4 X	1	Date 16/12/2021	Flushed	Pre Cleaned through to enable
Weather 4 - Shower	rs	Customer Pres	sent	Service Grade/S	Structural Grade / 2	45	Base Unit HB4JCDDY	Se	ction Number 9
Road KINSALE ROA Place CORK Location	AD	• •			Division District Location Details				
Purpose Duty Foul Catchment			Shape/Si Material Category	ze 600mm Concrete			Start Node MHF. End Node MHF.5 Total length 1.19	4 metres	
Scale 1:0.05 Direction Downstrea	am								
Start Node Ref:MHF Position	4 I/L : me Code	etres Description						Photo	Type/Grade
0.00 0.00 0.01	ST MH WL CL	Start of Survey I Start node type, Water level 40% Crack longitudin	Length manhole. height/di hal at 12 o	, reference MHF ameter 'clock	.4			5874827 5874828 5874829 5874830	Comment / 0 Comment / 0 Structural / 2
1.14	SA	Survey abandon	ned - Rem	ark: CAMERA V	VILL NOT TRAV	'ELSILT	DEBRIS IN	5874831	Comment / 0
1.19	CLJ	DRAIN. Crack longitudin	ial at 11 o	'clock at joint				5874832	Structural / 2

End Node Ref:MHF.5 | I/L : metres

DYNO-ROL Drain Cleaning, Inspection & Rep.	Report S	Summary	Dyno Rod Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Ireland
Job Number Q309604-REV 1	Surveyed by (Operator) J O BRIEN	Base Unit 45HB4JCDDY	Date 29/11/2021
Job Information Total Distance Surveyed: 158 Engineer: J O BRIEN Number of Surveys: 9 Number of Surveys grade 4 o	.96 metres r above: 0		
Section 1 Overview (29/1 Manholes: MH.S1 to MH,S2 Pipe Length: 10.7 metres Structural Grade: 0 Service Grade: 0 Material: PVC Pipe Size: 225mm Use: STORM	1/2021)		
Section 2 Overview (29/1 Manholes: MH.S1 to RIVER Pipe Length: 8.27 metres Structural Grade: 0 Service Grade: 0 Material: PVC Pipe Size: 225mm Use: STORM	1/2021)		
Section 3 Overview (29/1 Manholes: MH,F2 to MHF,1 Pipe Length: 26.52 metres Structural Grade: 0 Service Grade: 0 Material: CON Pipe Size: 600mm Use: Foul	1/2021)		
Section 4 Overview (29/1 Manholes: MH,F2 to MHF,3 Pipe Length: 24.78 metres Structural Grade: 0 Service Grade: 0 Material: CON Pipe Size: 600mm Use: Foul	1/2021)		
Section 5 Overview (29/1 Manholes: MHF,4 to MHF,3 Pipe Length: 84.08 metres Structural Grade: 0 Service Grade: 0 Material: CON Pipe Size: 600mm Use: Foul	1/2021)		

DYNO-ROD Drain Cleaning, Inspection & Repa	Report S	Gummary	Dyno Rod Cork Unit P1, Marina Commercial Park Centre Park Road Cork City County Cork EIRE Ireland
Job Number Q309604-REV 1	Surveyed by (Operator) J O BRIEN	Base Unit 45HB4JCDDY	Date 29/11/2021
Section 6 Overview (29/1 Manholes: MHF,4 to MHF,5 Pipe Length: 2.22 metres Structural Grade: 0 Service Grade: 4 Material: CON Pipe Size: 600mm Use: Foul	1/2021)		
Section 7 Overview (16/1 Manholes: MHF.4 to MHF.5 Pipe Length: 0 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 600mm Use: Foul	2/2021) 50% SILT + DEBRIS IN DF JETTED AND DEBRIS + S	RAIN CAMERA WILL NOT TRAVEL. ILT REMOVED FROM DRAIN TO C.	LINE WILL NEED TO BE HIGH ARRY ON THE SURVEY.
Section 8 Overview (16/1 Manholes: MHF.4 to MHF.5 Pipe Length: 1.2 metres Structural Grade: 2 Service Grade: 0 Material: Concrete Pipe Size: 600mm Use: Foul	2/2021)		
Section 9 Overview (16/1 Manholes: MHF.4 to MHF.5 Pipe Length: 1.19 metres Structural Grade: 2 Service Grade: 0 Material: Concrete Pipe Size: 600mm Use: Foul	2/2021)		

Appendix G

Foul Water Pumping Station Information

Flygt Concertor[™]

THE WORLD'S FIRST WASTEWATER PUMPING SYSTEM WITH INTEGRATED INTELLIGENCE

A new level of thinking to solve modern wastewater challenges

Are you prepared to meet the future challenges of the wastewater industry? Like never before, aging infrastructure, global urbanization, increasing energy costs and the need for sustainable solutions are making cost reduction an urgent priority for all. Just imagine that by 2050, an estimated 70% of all the world's population will be living in cities - an urban wastewater challenge on a scale we've never seen before.

The solution to all these challenges is not more components and complexity but intelligent, flexible and leaner solutions. This is why, for decades, we've been dedicated to developing sophisticated wastewater pumping solutions that substantially boost your efficiency while dramatically reducing your total equipment footprint and cost of ownership. It's a complex challenge that only the most innovative and integrated designs can solve.

Innovation and integration it's part of Xylem's DNA

For more than 60 years, Xylem's Flygt brand has continuously raised industry standards for compact, trouble-free pumping. Ever since introducing the world's first submersible pumps, the focus has been on integrating technologies to reduce complexity and costs. The breakthroughs that have emerged along the way have been a huge benefit to wastewater pumping stations all over the world.

Our commitment to deliver peace of mind

At the end of the day, your peace of mind is the true measure of our success. And we remain as determined as ever to raise your expectations for smarter, more reliable and user-friendly pumping systems. Our new wastewater pumping system with integrated intelligence takes these expectations to the next level. A new level of technology, and a new level of thinking.

Sixty years of innovative, integrated techologies

1947 First submersible dewatering pump prototype - the "Parrot Cage"was designed.

1997 Introduction of the first N-pump with a unique self-cleaning impeller.

2011

Flygt SmartRun®, a new intelligent pre-programmed pump control system for water pump station, is launched.

1901

1956 Creation of the C-pump: the first-ever submersible wastewater pump, which vastly reduced the space required for modern pumping stations.

2009

Launch of the Adaptive N-Pump impeller, which moves upwards to allow larger objects and debris to pass through.

 $2016 \longrightarrow$

Flygt Concertor[™] A new level of technology with unlimited possibilities

Xylem is proud to introduce the world's first wastewater pumping system with integrated intelligence. A real breakthrough innovation, Flygt Concertor™ is capable of sensing the operating conditions of its environment, adapting its performance in real time and providing feedback to pumping station operators. With this new system, Xylem is now bringing smart and interconnected solutions to the world of wastewater pumping.

The name Concertor is based on the Latin word "concentare", which means working together to orchestrate harmony. It relates to the system's unique synergy between software functions and state-of-theart hardware and the remarkable benefits this innovation can bring to our customers around the world.

A new way of thinking

Concertor combines a fully integrat-

ed control system with IE4 motor efficiency, our patented Adaptive N-hydraulics and intelligent functionalities. The control system automatically adapts to the changing pumping environment, delivering the optimal level of performance at the lowest cost of ownership. The built-in intelligence also makes it easier to set up and operate, as well as allowing for a significantly smaller footprint.

One powerful solution, unlimited possibilities.

Concertor's advanced technology gives you a wide range of benefits covering four main categories. The whole idea is to give you greater peace of mind while reducing your total costs.

EFFICIENT ASSET	TROUBLE-FREE	ENERGY	REDUCED TOTAL
MANAGEMENT	PUMPING	SAVINGS	INVESTMENT
 Selection from a performance field instead of a fixed performance curve allows for enhanced operational flexibility. Adaptive technology automatically selects the duty points to optimize performance. Performance can be fine-tuned on site without changing the impeller. 	 Built-in sump and pipe cleaning reduces odor and maintenance. Clog detection and pump cleaning functions ensure clog-free operation. Built-in self-monitoring functionality prevents overheating and extends pump lifetime. Automatic rotation set- tings prevent incorrect impeller rotation. 	 Patented Energy Minimizer automatically optimizes performance to reduce energy costs. Adaptive N-technology delivers sustained efficiency. Super premium IE4 motor efficiency. 	 Pre-engineered solution with simple set-up wizard saves engineering time and makes start-up quick and easy. A smaller, simplified cabinet frees up space and reduces cost.

EFFICIENT ASSET MANAGEMENT

From complex selection . . .

Flygt Concertor™ offers a pump performance field covering a wide range of pump curves. No need for the perfect station design data. No need for a large inventory. One pump self-adjusts or can be adjusted to fit changing conditions - without having to change impeller diameters or motor sizes.

As wastewater volumes increase, it is often necessary to upgrade the pump and control equipment to manage the additional flow rates. Even an experienced professional may have difficulty in selecting just the right performance curves due to uncertain conditions. Concertor simplifies product selections and at the same time reduces your inventory.

INVENTORY CAN BE REDUCED BY UP TO

DUE TO CONCERTOR'S FLEXIBLE PERFORMANCE

to an easy decision with one flexible solution

By having Concertor, with three outlet dimensions, we could drastically reduce our inventory.

Anders Sjöstrand, Lomma Municipality, Sweden

Self-optimizing performance

Unlike the fixed performance curves of conventional pumps, Concertor offers an entire performance field from which to choose the right operating point. Not only does this make selection extremely simple, but operating performance can easily be changed and fine-tuned on site or remotely, as required.

Reduced backup inventory

Since the system covers a broad performance field and adapts automatically to different duty points, your pump inventory can be significantly reduced. This also simplifies the process when searching for a spare or emergency pump.

EFFICIENT ASSET MANAGEMENT

- Easier product selection
- Adjustable performance curves
- Fine-tune remotely or on site
- Reduced backup inventory
- Easier spare part handling
- Reduced delivery lead times

TROUBLE-FREE PUMPING

From dirty troublemaker . . .

Cleaning out sludge, sand, grease and other debris from a sump tank can be an unpleasant and costly task. While Flygt pumps are equipped with the latest technology to solve these challenges, Flygt Concertor™ takes trouble-free pumping to an entirely new level.

This big improvement is enabled by a unique combination of technology and intelligent functionalities to keep your wet well clean and your pump clog-free at all times.

Cleaner wet wells and clog-free pumping

To reduce sedimentation, odor build-up and unplanned call-outs, we've added built-in sump and pipe cleaning functions in a single integrated wastewater pumping system

CLOG-FREE PUMPING OPERATION AND CLEAN WET WELLS SAVE UP TO

ON VACUUM CLEANING COSTS

to clean wet wells at all times

R. Ramesh, Sultan Qaboos University, Oman

have saved both money and time.

for the first time ever. Extensive trials show that this dramatically minimizes unplanned and costly maintenance. An integrated pump cleaning function, together with our patented Adaptive N-technology, detects and resolves clogging from large debris.

Increased reliability and product life cycle time

The pump provides self-monitoring functionality that will prevent overheating and motor failures due

to external conditions. The innovative motor technology and Energy Minimizer increase the lifetime of the motors, seals and bearings. Finally, and very significantly, the control system inside the pump is placed in a stable environment, which protects it from unfavorable external conditions.

TROUBLE-FREE PUMPING

- Built-in sump and pipe cleaning
- Integrated pump cleaning function
- Self-cleaning hydraulics
- Self-monitoring functionality
- Self-tuning to preserve key components
- Electronics placed in stable submerged environment

ENERGY SAVINGS

From thirsty consumer . . .

Energy consumption adds up. But what if we told you it's now possible to cut your electric bill by up to 70% compared to a conventional system? That's because the entire Flygt Concertor™ system is a true energy-saver.

Equipped with a seamless combination of new software and next-generation hardware, Concertor is designed for automatic self-optimization to assure the lowest possible energy consumption. This is largely due to our patented Energy Minimizer function, which automatically ensures that all the pumps in your stations

ENERGY SAVINGS OF UP TO

COMPARED TO CONVENTIONAL PUMPING SYSTEMS

to smart energy saver

	ENERC	GY USAGI	Ε											F			K	
JANK FEB ANDE AND AND WE WIT AND SEP OCT AND DE	-															V		
		JAN	4 ⁶⁸	MAR	APR	MAY	UNE	NULX	AUG	SER	0 ^{C1}	NON	DEC					

are running at their most efficient duty points, at all times.

Energy savings is about more than just sophisticated built-in software. Unparalleled pumping efficiency is also enabled by state-of-the-art components such as our new Super Premium IE4 Efficiency motor and new mechanical self-cleaning Adaptive N-hydraulics. And since there is no need for ventilation, cooling or heating of cabinets, you get substantial savings over the total lifecycle.

ENERGY SAVINGS

- Automatic self-optimizing Energy Minimizer
- State-of-the-art components
- Premium Efficiency IE4 motor
- Adaptive N-hydraulics
- Climate control savings

REDUCED TOTAL INVESTMENT

From bulky equipment . . .

Advanced functionality is desirable, but it often requires additional components, custom engineering and large cabinets. Flygt Concertor™ solves this by integrating everything into one single system with a smaller footprint and even more attractive features.

Concertor's system design results in compact control cabinets since traditional components, such as motor protection, variable frequency drives (VFDs) and climate control equipment, are no longer fitted in the cabinet. They are either eliminated or built into the pump. The pump's integrated intelligence reduces the size of the cabinet while also enabling more monitoring functionalities.

CONCERTOR CAN REDUCE THE SIZE OF CABINETS UP TO

COMPARED TO **CONVENTIONAL** CABINETS

to slim and smart controls

The compact design allowed us to fit it into the existing position within the pump station, without any extra investment.

Ian Jolly, Heathrow Airport Water Services Department, UK

Simple set-up for advanced systems

All monitoring and control functions are pre-engineered, configured and tested as a total solution - straight from the factory - giving you peace of mind from a single supplier. Installation and commissioning are also swift and stress-free thanks to a helpful set-up wizard and the straightforward cabinet design. All of this reduces the need for engineering hours, both at the design stage and at the time of pump station commissioning. In short, you reduce your total investment costs.

REDUCED TOTAL INVESTMENT

- Pre-engineered as total solution
- Factory configured and tested
- Smaller and simplified cabinet design
- User-friendly installation wizard
- Built-in supervision and monitoring functions
- No need for climate control equipment

How the Flygt Concertor[™] integrated intelligence works

Concertor is a breakthrough innovation based on Flygt Dirigo[™] technology. This new system is enabled by integrating a processor, software, sensors, power electronics, a synchronous electric motor and self-cleaning hydraulics into a submersible shell. The term "intelligent" refers to the system's ability to automatically deliver optimal pumping performance while reducing the total cost of ownership.

Concertor is capable of sensing the environment it is operating in as well as the load it is subjected to, adjusting its performance in real time to meet your optimization targets. By collecting and analyzing relevant data, the pump system can make smart decisions about how it operates and what relevant feedback to give you.

New Dirigo platform

This higher level of integrated intelligence is enabled by our Dirigo

platform that consists of a motor, control electronics and software. Dirigo delivers significant cost savings, a more precise level of motor control, reduced risk of clogging, substantial energy savings, comprehensive data reporting and more.

One fully scalable system

Thanks to the scalable nature of the system, you can always add new functionality without having to throw away your initial investment. The Concertor XPC, our most advanced wastewater pumping system, is pre-engineered and pre-configured so you can simply hook it up and start operating. For more basic on/ off operated pump stations, Concertor EA and N are also flexible choices that can easily be upgraded.

Self-adjusting functionality

There are several crucial differences between Concertor and standard systems. Firstly, the power

Flygt Dirigo[™] technology platform

Dirigo is Flygt's intelligent, flexible and submersible drive unit, which consists of a synchronous permanent magnet motor and an integrated motor control system. It enables advanced functionality, a more reliable system and extended lifetime.

electronics are built into the pump, eliminating the need for a variable frequency drive (VFD) and other external electronics that require bulky cabinets. Secondly, all hardware and software features are designed to work in harmony with each other, allowing for semi- or autonomous self-adjustment during operation. This avoids the need to remove the pump to trim or change an impeller since a different duty point can be met at the touch of a button.

Full connectivity

Since Concertor covers a broad performance field, your main decision is not about duty points, but selecting the required level of connectivity. As shown in the diagram, you can connect it to a gateway, controller or via modem to a SCADA system. You can also add our HMI monitor if you prefer. A lot will depend on your current set-up and whether you are using a thirdparty system. Even if you already have a cabinet, the electronic components of Concertor are so few and compact that they can easily fit inside. In other words, the system gives you a proven way to reduce your total cost of ownership.

One scalable system

Flygt Concertor[™] delivers high performance in four scalable configurations. The right solution for you will depend on your specific application requirements. And since the system is scalable and flexible, you can migrate from one solution to another as your needs evolve.

	Concertor™ XPC	Concertor™ DP	Concertor™ EA	Concertor™ N
Easy product selection	+++	+++	+++	+++
Reduced inventory	+++	+++	+++	+++
Flexible on-site operation	+++	+++	+++	+
Small-sized cabinets	+++	+++	+	+
Clog-free pumping	+++	++	++	++
Energy savings	+++	++	++	++
Increased reliability and extended lifetime	+++	++	++	++
Compact product with fewer components	+++	++	+	+
Free up engineering and installation hours	+++	++	+	+
Clean wet wells	+++			

Concertor benefits compared to conventional wastewater pumping systems.

Concertor™ N

The most intelligent wastewater pump on the market. Suitable for customers operating traditional on/off pump stations who want to benefit from easily adjustable pump performance, soft start and constant power functions as well as motor protection.

Concertor[™] EA (Easily Adjustable)

The most reliable and energy-efficient on/off controlled wastewater system on the market. It consists of individual pumps together with a gateway for each pump.

Suitable for customers who want to benefit from easily adjustable pump performance, soft start/soft stop functions, constant power and motor protection, among other features.

Concertor™ DP (Dynamic Performance)

A process-controlled wastewater pumping system that consists of as many pumps as required by your application, as well as one gateway per pump.

Suitable for users with specially designed process control algorithms who want to benefit from lower capital costs, smaller control cabinets and higher pump system efficiencies.

Specifically designed for sewage pumping stations in collection systems, the XPC system consists of one to four pumps, one XPC control unit and one to three DP gateways.

Perfect for users who desire the full functionality of the Concertor system, including maximum energy savings and clean wet wells.

Easier product selection and reduced inventory

With Flygt Concertor[™], pump selection has never been easier due to the unlimited number of performance curves. This reduces the need for backup inventory by up to 80% and enables pump performance to be easily changed on site or remotely.

Constant power functionality

This software function operates the pump at varying rotational speeds to achieve a constant motor power. The benefits are clear: no more overloading pump curves and substantially increased off-design pump performance.

Constant power pump curve Traditional pump curve

Clog-free pumps and clean wet wells

Flygt Concertor™ is designed to ensure clean wet wells, clog-free operation and a reduction in vacuum cleaning call-outs by up to 80%. Additional motor and pump system protection are part of the integrated offer for maximum reliability.

Pump cleaning

The built-in clog detection function detects when the pump is about to clog and triggers the pump cleaning cycle. A pump cleaning cycle is initiated when a clogging instance is detected and the built-in intelligence will then operate the impeller at different speeds and directions, to remove the debris.

Sump and pipe cleaning

The sump cleaning function removes floating debris and sediments, eliminating the need for expensive wet well cleaning. The pipe cleaning function assures that pipe sediment is removed, minimizing the risk of pipe clogging.

Increased reliability and extended lifetime

The self-monitoring function prevents motor failures due to external conditions. The control system inside the pump, which is placed in a stable and protected environment, will try to reset the pump automatically after a failure. The constant power and advanced motor protection functions ensure a high degree of reliability since the motor is never subjected to overloading.

The soft start function reduces electrical inrush currents and minimizes stress on the shaft, joints, bearings and impeller. By controlling acceleration and deceleration, the motor will be gently started and stopped.

This also reduces the risk for water hammer effects in the pump system. Concertor EA, DP and XPC also have built-in alarm management and history functionalities. Concertor XPC includes additional features such as pump alternation, emergency run at high level, random start and pump start/ stop delays.

To the left, a sump tank in one of our field trials before the Flygt Concertor™ system was installed and then after two weeks of operation (right).

Unparalleled pumping system efficiency

Flygt Concertor™ is capable of reducing energy consumption by up to 70%, compared to conventional pumps and control systems. This is enabled by a unique synergy between software features and state-of-the-art technology.

Energy Minimizer

This patented software algorithm assures that all pumps are continuously controlled to achieve the lowest possible specific energy usage. It has been field proven in thousands of installations, reducing our customers' energy usage by up to 50%, compared to regular on/ off operated pumps under identical operating conditions.

State-of-the-art N-hydraulics

A new generation of our Adaptive N-technology enables high efficiency and lower energy usage. The Adaptive N-impeller moves axially upward when needed, allowing bulky fibrous material and debris to pass through smoothly. After the debris has passed, the hydraulic pressure returns the impeller to its original position. Not only does this prevent clogging and reduce stress on the shaft, seals and bearings, but it enables a sustained low usage of energy. As with all Flygt N-pumps, this feature delivers constant self-cleaning functionality.

Motor efficiency meeting IE4 levels

Concertor utilizes a new Super Premium IE4 motor based on a concentrated winding synchronous design. Compared to standard induction motors, it offers significant benefits including increased motor efficiency, greater control, dramatically improved low speed efficiency and reduced size. The concentrated stator winding design allows it to be

Concertor's IE4 motor is shorter and more compact than a conventional motor due to its concentrated stator winding design.

shorter and more compact than an induction motor with a comparable rating. The rotor is equipped with strong permanent magnets that create and maintain the rotor's magnetic field. Due to the low losses, virtually no heat is generated in the rotor and thus no heat flows out to the bearings via the shaft ends. The result is a cooler running motor with longer motor and bearing life.

Power factor close to 1

A power factor below 1 requires the utility to generate more reactive power than is really needed. This increases generation and transmission costs. To avoid this situation, the Concertor system keeps the power factor close to 1.

Our new, improved Adaptive N-hydraulics ensures both clogfree operation as well as a higher total level of system efficiency.

Smaller control cabinets and easier commissioning

Flygt Concertor[™] eliminates the need for traditional components in the cabinet such as motor protection, soft starters, variable frequency drives (VFDs) and climate control equipment. This gives you full process control functionality with a cabinet that can be up to 50% smaller.

Smaller control cabinets

The integration of intelligence in the Concertor system allows control cabinets to be simpler, more compact and cost-efficient. The following components, among others, are no longer needed:

- Motor protection devices
- Power and current measurement devices
- Soft starters
- VFDs
- Climate control equipment, fan, A/C equipment, particle filters

The intuitive HMI display features a set-up wizard that guides the user through the entire commissioning process.

Faster commissioning

A set-up wizard guides you through installation asking a set of pre-defined questions in a way that even an untrained user can understand and answer. After set-up, the system is ready to operate and communication to other systems, such as third-party PLC and SCADA, is possible through pre-configured interfaces.

Correct impeller rotation

The impeller in a pump is designed to rotate in one specific direction. For traditional three-phase pumps, this has to be checked at commissioning, since the impeller will rotate in the wrong direction if two of the phases are shifted. With Concertor's always-correct impeller rotation function, this potential problem is automatically eliminated.

The integration of intelligence in the Concertor system allows control cabinets to be simpler, more compact and cost-efficient.

Flygt Concertor[™] feature and technical overview

Flygt Concertor™ System	ХРС	DP	EA	Ν
Push a button to change pump performance		1	1	× ا
Clog detection	1	J	1	1
Pump cleaning	1	1	1	1
Constant power	√	1	1	1
New generation Adaptive-N design	1	1	1	1
Motor efficiency in compliance with IE4	1	1	1	1
Power factor close to 1	1	1	1	1
Always correct impeller rotation	\checkmark	√	1	\checkmark
Automatic restart trials at faults	\checkmark	√	\checkmark	\checkmark
Soft start	\checkmark	1	1	\checkmark
Soft stop	1	1	1	
Pump sump alarm I/O, thermal and leakage	1	1	1	1
Multiple alarms, two priorities	1	1	1	
Set-up wizard	\checkmark	\checkmark	\checkmark	
External communication	\checkmark	\checkmark	\checkmark	
Status and history	\checkmark	1	\checkmark	
Human Machine Interface (HMI)	\checkmark	1	\checkmark	
Emergency run relay functionality		1	1	
Pump station controller	\checkmark			
Energy Minimizer	1			
Sump cleaning	1			
Discharge pipe cleaning	1			
External process control (4-20 mA or Modbus)		1		

* Service tool

Concertor™ N	
Motor	Synchronous (concentrated winding)
	Permanent magnet rotor
	IE4 according to IEC/TS 60034-30-2 Ed. 1
Frequency	50-60 Hz
Voltage	380-480 V
5	200-260 V
Rated Power	2.2: 4.0: 5.5: 7.3 kW (3.0: 5.5: 7.5: 10.0 Hp)
Rated ambient temperature	40° C (104° E)
Hydraulic	Adaptive N
	Guide pin
Discharge sizes	80 mm (3")
	100 mm(3')
	$150 \text{ mm}(4^{\circ})$
Speed range	500 2600 rpm
	Crew Iron impoller
Impener material options	
Cool sustant	Duplex stainless steel impeller
Searsystem	
Contractorials and in a	Active seal function
Seal materials options	
	Liquid-free neat-conduction technology
Installation	P - Semi-permanent wet well installation
	5 - Semi-permanent free standing installation
	I - Vertically mounted, permanent dry well installation
<u></u>	2 - Horizontally mounted, permanent dry well installation
Sensors	Leakage detection in stator housing
	Iwo independent temperature sensors
Cable	Screened Flygt SUBCAB®, with integrated control wires
Cable	Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft)
Cable Approvals XPC Controller, DP Gateway, EA Gateway	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x PS485
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet P I 45
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Diaplay interface
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Madhua PTU
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Digital inputs
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Digital inputs 1 x Analog input
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Analog input 1 x Analog output
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Pump interface	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x nalog input 1 x Analog output 1 x Pump communcation port
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Pump interface User interface	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Analog input 1 x Analog output 1 x LED
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Pump interface User interface	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x R5485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 1 x Analog input 1 x Analog output 1 x Rotator swirch
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Pump interface User interface Data logging Environment	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 1 x Analog input 1 x Analog output 1 x Rotator swirch 1000 Data points
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Pump interface User interface Data logging Environment class	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 1 x Analog input 1 x Pump communcation port 14 x LED 1 x Rotator swirch 1000 Data points Protection class: IP 20
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Pump interface User interface Data logging Environment class	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Digital inputs 1 x Analog output 1 x Rotator swirch 1000 Data points Protection class: IP 20 Operation temperature: -20 °C to +70°C
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Communication Standard I/O Pump interface User interface Data logging Environment class Size (Wx Lx H)	Two independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Digital inputs 1 x Analog output 1 x Rotator swirch 1000 Data points Protection class: IP 20 Operation temperature: -20 °C to +70°C
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Standard I/O Data logging Environment class Size (Wx Lx H) Approvals	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 1 x Analog output 1 x Rotator swirch 1000 Data points Protection class: IP 20 Operation temperature: -20 °C to +70°C 45x100x100 mm CE, UL, CSA
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Standard I/O Standard I/O Data logging Environment class Size (Wx Lx H) Approvals HMI Dati IMI	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Digital inputs 1 x Analog output 1 x Rotator swirch 1000 Data points Protection class: IP 20 Operation temperature: -20 °C to +70°C 45x100x100 mm CE, UL, CSA
Cable Approvals XPC Controller, DP Gateway, EA Gateway Power supply Ports Communication Communication Standard I/O Pump interface User interface Data logging Environment class Size (Wx Lx H) Approvals HMI Basic HMI Tawak UMU	Iwo independent temperature sensors Screened Flygt SUBCAB®, with integrated control wires 10, 16, 20, 30 m (30, 50, 60, 100 ft) CE, FM, ATEX, IECEx, CSA 24 VDC 1 x USB 1 x RS485 1 x Ethernet RJ 45 1 x Display interface, CAN Modbus RTU Aquacom Modbus TCP 4 x Digital outputs 4 x Digital inputs 1 x Analog output 1 x Rotator swirch 1000 Data points Protection class: IP 20 Operation temperature: -20 °C to +70°C 45x100x100 mm CE, UL, CSA

Xylem |'zīləm|

The tissue in plants that brings water upward from the roots;
 a leading global water technology company.

We're 12,000 people unified in a common purpose: creating innovative solutions to meet our world's water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to www.xyleminc.com

Flygt is a brand of Xylem. For the latest version of this document and more information about Flygt products visit **www.flygt.com**